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Abstract
This thesis is devoted to the generalization of the Dual-Primal Finite Element Tearing
and Interconnecting (FETI-DP) method to linear algebraic systems arising from the
Isogemetric Analysis (IgA) of linear elliptic boundary value problems, like stationary
diffusion or heat conduction problems. This IgA version of the FETI-DP method is
called Dual-Primal Isogeometric Tearing and Interconnect (IETI-DP) method. The
FETI-DP method is well established as parallel solver for large-scale systems of finite
element equations, especially, in the case of heterogeneous coefficients having jumps
across subdomain interfaces. These methods belong to the class of non-overlapping
domain decomposition methods.

In practise, a complicated domain can often not be represented by a single patch,
instead a collection of patches is used to represent the computational domain, called
multi-patch domains. Regarding the solver, it is a natural idea to use this already
available decomposition into patches directly for the construction of a robust and
parallel solver. We investigate the cases where the IgA spaces are continuous or even
discontinuous across the patch interfaces, but smooth within the patches. In the
latter case, a stable formulation is obtained by means of discontinuous Galerkin (dG)
techniques. Such formulations are important for various reasons, e.g, if the IgA spaces
are not matching across patch interfaces (different mesh-sizes, different spline degrees)
or if the patches are not matching (gap and overlapping regions).

Using ideas from dG-FETI-DP methods, we extend IETI-DP methods in such a way
that they can efficiently solve multi-patch dG-IgA schemes. This thesis also provides
a theoretical foundation of IETI-DP methods. We prove the quasi-optimal depen-
dence of the convergence behaviour on the mesh-size for both version. Moreover, the
numerical experiments indicate robustness of these methods with respect to jumps
in the coefficient and a weak dependence on the spline degree. All algorithms are
implemented in the C++ library G+Smo.

Finally, this thesis investigates space-time methods for linear parabolic initial-boundary
value problems, like instationary diffusion or heat conduction problems. The focus is
again on efficient solution techniques. The aim is the development of solvers which
are on the one hand robust with respect to certain parameters and on the other hand
parallelizeable in space and time. We develop special block smoothers that lead to ro-
bust and efficient time-parallel multigrid solvers. The parallelization in space is again
achieved by means of IETI-DP methods.
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Zusammenfassung
Diese Arbeit ist der Verallgemeinerung der so genannten “Dual-Primal Finite Element
Tearing and Interconnecting” (FETI-DP) Methode auf lineare Gleichungssysteme ge-
widmet, die aus der isogeometrischen Analyse (IgA) von linearen elliptischen Rand-
wertproblemen, wie etwa stationäre Diffusions- oder Wärmeleitproblemen, entstehen.
Wir nennen diese Verallgemeinerung “Dual-Primal Isogeometric Tearing and Inter-
connecting” (IETI-DP) Methode. FETI-DP ist eine weit verbreitete parallele Methode
zum Lösen von großen linearen Gleichungssystemen, die aus der Diskretisierung mit-
tels Finiten Elementen entstehen. Insbesondere lässt sich diese Methode parallelisieren
und ist besonders geeignet um Probleme mit springenden Koeffizienten zu lösen.

Komplexe Geometrien werden als Vereinigung von “einfachen” Gebieten, genannt “Pat-
ches”, repräsentiert und als “Multi-patch” Geometrien bezeichnet. Diese bereits beste-
hende Zerlegung des Rechengebiets in Teilgebiete (Patches) bietet einen natürlichen
Zugang zur Konstruktion von effizienten und parallelisierbaren Lösern. Wir betrachten
die Verwendung von IgA Räumen, welche im Inneren der Patches glatte Ansatzfunk-
tionen besitzen, aber nur stetig oder sogar unstetig entlang der Patch-Schnittstellen
sind. Im Falle von unstetigen IgA Räumen verwenden wir sogenannte unstetige Galer-
kin (dG) Techniken um eine stabile Formulierung zu erhalten. Diese ermöglichen es uns
verschiedene Spline-Grade oder Gitterfeinheiten auf benachbarten Patches, sowie klei-
ne Löcher bzw. Überlappungen zwischen benachbarten Patches, zu betrachten.

Basierend auf der dG-FETI-DP Methode erweitern wir die IETI-DP Methode dahinge-
hend, sodass sie auch für Multi-patch dG-IgA Schemen anwendbar ist. In dieser Arbeit
beweisen wir die quasi-optimale Abhängigkeit des Konvergenzverhalten von der Gitter-
feinheit, sowohl für die stetige als auch die unstetige Version der IETI-DP Methode. In
numerischen Experimenten beobachten wir des Weiteren Robustheit bezüglich Sprün-
ge in den Koeffizienten und eine schwache Abhängigkeit von dem Spline-Grad. Die
vorgestellten Algorithmen sind in der C++ Bibliothek G+Smo implementiert.

Zuletzt untersuchen wir sogenannte Raum-Zeit Methoden für lineare parabolische
Anfangs-Randwertprobleme, wie etwa instationäre Diffusions- oder Wärmeleitungs-
probleme. Wie in den anderen Kapitel liegt der Fokus erneut auf effizienten Lösungs-
strategien. Ziel ist es Löser zu entwickeln, die einerseits robust gegenüber verschieden-
sten Parametern sind und andererseits sich bezüglich Ort und Zeit parallelisieren las-
sen. Dazu entwickeln wir Glätter, die zu robusten zeit-parallelen Multigrid Methoden
führen. Die zusätzliche Parallelisierung im Ort wird mittels IETI-DP erreicht.
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Chapter 1

Introduction

The simulation of physical processes, like, heat transfer, diffusion, liquid or gas flow and
electro-magnetism, is of great importance in natural sciences, engineering and many
other fields. Mathematically, such processes are modelled via partial differential equa-
tions (PDEs) or systems of PDEs together with appropriate boundary and/or initial
conditions. Usually, such problems cannot be solved in an analytical way, especially
not when considering real-world applications. Instead, we are looking for an approx-
imate solution, described by a finite number of parameters, called degrees of freedom
(dofs). In many practical applications, the number of dofs is around 106 − 109.

In order to construct such an approximation to a PDE, several methods have been
developed. Finite difference methods (FDM), finite volume methods (FVM), finite
element methods (FEM) or boundary element methods (BEM) are now the most
prominent representatives of such discretization methods for PDEs. In real-world
applications, the computational domain Ω is modelled by means of computer aided
design (CAD), and can be quite complex, e.g, electrical or combustion motors, cars,
planes, ships. However, the methods mentioned above require certain approximations
of Ω. For instance, when using FEM, we have to perform a triangulation of the domain.
Hence, the boundary ∂Ω of Ω may not be represented exactly. This introduces a
systematic error in the calculation. In order to overcome this issue, the concept of
Isogeometric Analysis (IgA) was introduced.

Usually, the mentioned methods yield a system of linear algebraic equations describing
the approximate solution. The challenge is to develop algorithms for computing this
solution, which are optimal with respect to the number of dofs, i.e., the time for the
computation grows linearly with the number of dofs. Moreover, due to the steadily
growing number of available processors in computing centres and also in Desktop PCs,
it is very important to have an algorithm which can be parallelized.

The focus of this thesis is on the development of algorithms, which can solve the
system of linear algebraic equations arising from Isogeometric Analysis of elliptic and
parabolic diffusion problems in almost optimal complexity and in parallel.

1



2 CHAPTER 1. INTRODUCTION

State of the Art

Isogeometric Analysis

Isogeometric Analysis is a methodology for solving PDEs numerically. IgA was intro-
duced by Hughes, Cottrell and Bazilevs in [107], and has become a very active field
of research. We refer to [14] for the first results on the numerical analysis of IgA, the
monograph [40] and the recent survey article [16] for a comprehensive presentation of
the mathematical analysis of variational isogeometric methods.

The main idea is to use the basis functions, which are used for the representation of
the geometry in CAD models, also for the approximation of the solution of the PDE
describing the physical phenomenon which we are going to simulate. The typical choice
for such basis functions are B-Splines or Non-Uniform Rational B-Splines (NURBS).
One advantage of IgA over the more traditional FEM is the fact that there is no
need for decomposing the computational domain into triangles or tetrahedra. Hence,
one gets rid of this geometrical error source, at least, in the class of computational
domains that can be exactly represented by a CAD system. Typically, a complex
geometry cannot be described by a single domain, called patch, but is composed of
several patches leading to a so-called multi-patch domain. A further benefit is that it is
much easier to build up C l, l ≥ 1, conforming basis functions in IgA than in the finite
element (FE) framework. This is especially important when dealing with higher-order
PDEs, like the biharmonic equation, which appears, e.g., in plate bending theory. For
such problems, at least a C1 basis in a conforming variational setting is required, which
is difficult to achieve in the FEM. However, difficulties arise when smooth bases have
to be constructed for multi-patch domains. We refer to [114], [33] and [112] for an
investigation of higher-order PDEs using smooth isogeometric bases on multi-patch
domains.

B-Splines or NURBS provide the same approximation order as the corresponding FE of
degree p, see, e.g., [14], [208], [35] and [24]. However, if we consider splines of maximal
smoothness, i.e., Cp−1, we need much less dofs to get the same order of convergence
than for FE. Nevertheless, in general, B-Splines have a much larger support, and are
more costly to evaluate than FE basis functions. This introduces additional challenges
for the matrix assembly, see, e.g., [36], [163], [101], [164] and references therein for
different strategies to overcome this issue, see also [193] for a matrix-free algorithm
using weighted quadrature. Similar discrete trace and inverse inequalities can be
shown as for FE, see e.g., [14], [59], [148] and [210]. The explicit dependence on
the degree p has been shown in [139] by means of symbolic tools. In this thesis, we
restrict ourselves to so-called tensor-product B-Splines, where multivariate splines are
constructed by univariate splines using the tensor-product. Such splines do not allow
local for refinement, and are not suited for adaptive algorithms. There have been
invented several splines which allow for local refinement, like truncated hierarchical
B-Splines (THB-Splines), see, e.g., [73], [74], [72], T-Splines, see, e.g., [199], [15], [25],
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and local refined (LR) Splines, see, e.g., [46], [31].

The computational domain in a CAD system is usually represented via its boundary
and material interfaces by using several surface patches. In order to perform IgA, a
volumetric parametrization of the domain by several volumetric patches is required.
This procedure is called segmentation, and is not a trivial task. It is a common prob-
lem that the resulting volumetric patches are not fully matching at the interfaces, and
there can occur small gap and overlapping regions, called segmentation crimes. We
refer to [110], [173], [179], [174], [106], [230] and [231] for a description of segmentation
algorithms and [179], [173] and [61] for a discussion of occurring non-matching inter-
faces. The presence of such gap or overlapping regions introduces additional errors in
the discrete solution. Problems on multi-patch domains with gap and overlapping re-
gions have been considered in [97], [99], [98] and [100], where a discontinuous Galerkin
(dG) formulation is developed, using Taylor expansions to approximate the unknown
numerical fluxes at the non-matching interfaces. We mention that several techniques
have been recently investigated for coupling non-matching (or non-conforming) sub-
domain parametrizations in some weak sense. In [189] and [175], Nitsche’s method has
been applied to enforce weak coupling conditions along trimmed B-Spline patches. In
[4], the most common techniques for weakly imposing the continuity of the solution
on the interfaces have been applied and tested on non-linear elasticity problems. The
numerical tests have been performed on non-matching grid parametrizations. Further-
more, mortar methods have been applied in IgA utilizing different B-Spline degrees
for the Lagrange multiplier in [32].

Beside segmentation crimes, the dG-IgA formulation is used to couple patches where
the IgA spaces of adjacent patches are not matching, e.g., different B-Spline degrees
and non-matching meshes. It is important to note that the dG method is only used
at the patch interfaces, which does not increase the computational complexity as the
classical dG method. The dG method has been applied successfully to different PDEs
in FE, see, e.g., [188], [150] and [41]. It allows a great flexibility, e.g., having different
polynomial degrees on each element and hanging nodes in the triangulation. In con-
trast to the continuous Galerkin (cG) method, the continuity of the discrete solution
is enforced in a weak sense. For a detailed discussion of the dG method for FE, we
refer, e.g., to [188], [41], [50] [6], [5], [177]. An analysis of the dG-IgA formulation with
extensions to low regularity solutions can be found in [148], [144], [236]. Lastly we
want to mention the application of dG-IgA to PDEs on surfaces in [147], [235].

Fast Iterative Solvers

As already pointed out above, after discretization of the PDE, we have to solve a
system Ku = f of linear algebraic equations with a large number N of dofs. Direct
solvers, like Gaussian elimination or Cholesky factorization, do not result in algorithms
with optimal complexity, i.e., O(N), but O(Nβ) with some β > 1, see, e.g., [71] and
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[238]. Alternatively, we can use iterative methods, which compute an approximation
uk to the solution u based on previous iterations uk−1, . . . ,uk−s. So-called Krylov
subspace methods fit into this framework, see, e.g., [190]. Prominent representatives
are the Conjugate Gradient (CG) method [88], the Minimal Residual (MinRes) method
[178] and the Generalized Minimal Residual (GMRes) method [191]. The number of
iterations required to solve the system up to a given tolerance τ often (not always)
depends on the condition number κ(K) of the system matrix K. In order to obtain
an optimal method, the condition number should be independent of certain “bad”
parameters, like mesh-size h, spline degree p or material coefficients. A common
strategy is to use a so-called preconditioner C−1, i.e., instead of solving Ku = f , we
solve C−1Ku = C−1f . The challenge is to design preconditioners in such a way that
the condition number of κ(C−1K) has the desired properties.

One class of such preconditioners are so-called Domain Decomposition (DD) methods.
The key idea is to decompose the computational domain into smaller subdomains,
e.g., via a mesh partitioning, and use local (with respect to the subdomains) solutions
in an iterative process in order to construct the global solution. The problems on
the subdomains should be small enough such that, e.g., direct solver can be applied
efficiently. The class of DD methods is divided into overlapping and non-overlapping
methods (also called substructuring methods), where the subdomains are overlapping
and non-overlapping, respectively. Typically, these methods result in solvers with op-
timal O(N) or quasi-optimal O((1+log(N))γN) complexity. The first DD method was
developed by Schwarz in [198] and extended in [202], [166], [7], [154], [155] and [156],
nowadays called alternating Schwarz method and is a representative of an overlapping
DD method. For applications of various overlapping DD methods in IgA, we refer
to [18], [20], [26], [21] and [39]. For a historical overview, we refer to [69], and for
a comprehensive discussion of DD for FEM we refer to the monographs [201] [186],
[205], [215], [165], [183], [138] as well as the proceedings of the international Domain
Decomposition conferences1.

A prominent method, which is often successfully applied in practice is the Finite
Element Tearing and Interconnecting (FETI) method, see [64], [63], [160], [133] and
[134], and its dual-primal variant (FETI-DP), see [62], [161], [136], [135], [75] and [183].
First Lagrange multipliers are introduced to couple the independent local subdomain
problems and then the original variables are eliminated from the system, giving a
problem posed for the Lagrange multipliers. One has to be careful since the local
problems may not be uniquely solvable, e.g, in case of the Poisson equation, the
local Neumann problem on subdomains that do not touch the Dirichlet boundary
are only uniquely solvable up to constants. The dual-primal version circumvents this
problem by introducing additional primal variables. The final system for the Lagrange
multipliers can efficiently be solved by means of the CG method and an appropriate
preconditioner. By simple back-substitution, one obtains the original solution from
the Lagrange multipliers. For both FETI and FETI-DP methods, it is shown that the

1http://www.ddm.org/Proceedings.php
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condition number of the preconditioned system is bounded by O((1+log(H/h))2), see,
e.g, [134], [136], [183] and [215]. For a variant where the Dirichlet boundary conditions
are not eliminated from the local matrices, but incorporated via Lagrange multipliers,
called total FETI, we refer to [48]. The FETI-DP method is related to the Balancing
Domain Decomposition by Constraints (BDDC) method, that was introduced in [42].
The BDDC method is nothing but a preconditioner for the Schur complement system
with respect to the interface dofs. For an analysis, we refer to [158], [42] and [44].
It is shown in [159] and [30] that the FETI-DP and BDDC method have the same
spectrum up to a different number of zeros and ones. Finally, FETI-DP and BDDC
methods have been considered and discussed for spectral finite elements, e.g., in [180],
[181], [132], [125], [182] and [38].

A crucial point in FETI-DP is the choice of the primal variables, which eliminate
the local kernels and build up also the coarse problem. Common choices are vertex
values, edge or face averages. For example, just using vertex values for the three-
dimensional Poisson equation gives a suboptimal condition number bound O(H/h(1+
log(H/h))2), see [215]. Recently, extensions were developed which choose the primal
variables adaptively, based on local eigenvalue problems. For an overview, we refer
the reader to the survey articles [184] and [128], see also [117], [126], [127], [118]
and [37]. In [44] a more powerful preconditioner using the called deluxe scaling was
introduced, which allows for more varying material parameters, see [45], [227], [53]
and [55]. Numerical test in [22] and [23] for the case of IgA indicate also a reduced
dependence of the condition number on the smoothness of B-Splines across interfaces.
For the combination of dG and FETI-DP or BDDC, we refer to [51], [52], [57] and
[54]. The extension of the dG-FETI-DP method to IgA and its analysis will be the
main topic of Chapter 4.

The FETI-DP and BDDC methods have been successfully adapted to the IgA frame-
work. In this work, we investigate the adaption of FETI-DP for IgA, called dual-primal
IsogEometric Tearing and Interconnecting (IETI-DP), which was first introduced in
[137]. The extension of BDDC to IgA as well as its analysis can be found in [19]. There,
the authors investigate the case of having a decomposition obtained by subdividing
a single patch into multiple patches, and their analysis covers the case of NURBS
which have C l, l ≥ 1, continuity across the patch interfaces. Such a situation leads
to more general interfaces, called fat interfaces, which add additional computational
cost, especially, for the coarse problem. As already mentioned, a proof of the condi-
tion number bound for the BDDC method already implies a bound for the IETI-DP
method. The missing proof of having different mappings for each patch, coupled with
C0 continuity, will be given in Chapter 3. Impressive extensions of the method devel-
oped in [19] have been presented in [22] and [23], where the authors combine BDDC
for IgA with deluxe scaling and an adaptive selection of primal variables to eliminate
the bottleneck of having a too large coarse space. As already mentioned, the deluxe
scaling additionally reduces the large iteration numbers arising from highly smooth
splines at the interfaces.
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As already outlined above, it is important that the solver has a good parallel efficiency.
Since DD methods are usually build up from independent local problems and a single
coarse problem, they provide a quite natural framework for parallelization, where a
processor is assigned to one or more subdomains. Therefore, the only communication
appears if interface values have to be communicated to the neighbours or if information
from the coarse problems has to be distributed to all processors. For numerical ex-
periments, where the method scales up to several ten- or hundred-thousands of cores,
we refer, e.g., to [131], [187], [129], [86], [120] and [123]. For a general introduction to
parallelization of iterative methods, we refer, e.g., to [49] and [238]. In the FE case,
the subdomains are usually defined by a distribution of the mesh elements, e.g., by the
mesh partitioning software METIS and PARMETIS, see [115]. However, in IgA, the
given patches are chosen to be the subdomains of the DD method. This may cause load
imbalances for the parallelization. Furthermore, the size of the local problems might
be quite large. To overcome this issue, a splitting of large patches into subpatches has
to be performed.

So far, we have considered the solution of local problems using direct solvers. However,
they become large if the discretization is refined. In this case, inexact solvers for the
local sub-problems, as introduced in [130], could be superior to direct solvers. Indeed,
Multigrid methods, see, e.g., [84], [220], are often used as inexact solver. For further
research on inexact solver used in FETI-DP, especially, for the inexact solution of
the coarse problem, we refer to [122], [120], [130], [131] and [132] and for the related
BDDC method to [217], [218], [43], [152], [232] and [233]. Hybrid versions combining
FETI and FETI-DP have been investigated, e.g., in [131] and [187]. In Chapter 6, we
investigate inexact versions for IETI-DP methods. On the one hand, we investigate
the use of p-robust Multigrid methods, see e.g., [103], [102], [204], [203], [209] and [47],
and, on the other side, Fast Diagonalization methods, see the original works [157] and
[13], and the recent applications to IgA in [192], [168] and [211].

Finally, we want to highlight applications of FETI-DP methods to non-linear prob-
lems in [119], [122], [120] and [124]. Non-linear problems are often solved by means of
Newton methods, where the inner linearized problem is solved by fast iterative meth-
ods. In the mentioned works, the authors develop a FETI-DP method, which can be
directly applied to the non-linear equation.

Time-Parallel Multigrid Methods for Space-Time Problems

The philosophy of space-time methods is to treat the time t as just another variable,
say xd+1, where x1, . . . , xd are the d-dimensional spatial variables. Therefore, the
computational domain Q is considered to be a subset of Rd+1. In case of moving
spatial domains Ωt, t ∈ [0, T ], the moving boundary or interface is fixed in the space-
time domain and can be taken into account, when constructing the mesh, see, e.g., [212]
and [224]. However, in this work, we will restrict ourselves to non-moving domains,
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which lead to a tensor-product structure of the space-time elements. Additionally,
using a space-time mesh allows for local refinement and adaptive strategies to resolve
special features of the solution, like corner or edge singularities, or high oscillatory
parts. A posteriori error estimates that can be used for space-time adaptivity are
derived in [145] and [58]

Space-time finite element methods for parabolic and hyperbolic PDEs have a long
history and go back to the 80s and 90s of the last century, see, e.g., [108], [109], [8]
[9] and [85]. Due to the availability of massively-parallel computers with more than
hundred-thousands of cores, these methods came into the focus of current the research,
see [197], [172], [222], [223], [2], [11], [170], [167], [221], [206], [3], [200], [12], [149], [216],
[95] and [171] for recent papers on space-time methods for parabolic problems. A nice
historical overview on space-time methods can be found in [67].

We will focus on space-time methods, which use space-time slabs and investigate Multi-
grid methods for solving the corresponding huge linear system of algebraic equations.
Such methods were first introduced in [83] and extended, e.g., in [104], [105], [226] and
[68]. Such methods allow for an additional parallelization in time direction, leading
to methods which are parallel in space and time. Other methods, which allow for a
parallelization in time-direction, are the parareal method, see, e.g., [153] and [70], and
multiple shooting methods, see, e.g., [116] and [176]. Furthermore, for the application
of BDDC methods to construct parallel solvers see [10].

On this work

This thesis investigates fast iterative solvers based on DD to solve system of lin-
ear algebraic equations arising from IgA of elliptic and parabolic diffusion problems.
To be more precise, we consider the IETI-DP method, being the adaption of the
FETI-DP method to IgA, applied to continuous and discontinuous Galerkin IgA. In
case of parabolic problems, we develop time-parallel Multigrid methods with robust
smoothers, which can efficiently be implemented in parallel, e.g., by means of IETI-DP
methods.

Main Achievements

Analysis of the IETI-DP method for Multi-Patch cG Formulations and In-
exact Variants The condition number analysis of the IETI-DP method is extended
to the case of two-dimensional multi-patch domains, where each patch has its own
geometrical mapping. We consider the case of having only vertex values as primal
variables and globally constant diffusion coefficient. The proof is based on the results
established in [19]. Moreover, we propose variants where the patch-local sparse direct
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solvers are replaced by inexact solvers, which are robust with respect to the mesh-size
h and spline degree p.

Development and Analysis of IETI-DP for dG Formulations We use ideas
from [52] and [57] to extend the IETI-DP method to variational formulations posed on
two- and three-dimensional domains, where the dG method is used at patch interfaces.
Moreover, the condition number analysis of the method is performed for the case a
two-dimensional domain, having only vertex values as primal variables and constant
diffusion coefficient. The proof is based on the results established in [19]. The algo-
rithm is also successfully applied to domains with segmentation crimes, i.e., small gap
and overlapping regions at the interfaces.

Parallelization of the cG-IETI-DP and dG-IETI-DP Methods The cG-IETI-
DP and dG-IETI-DP methods are well suited for parallelization. They are parallelized
by means of the message passing interface (MPI). We present weak and strong scaling
results up to 1024 cores for both methods on two- and three-dimensional domains and
different B-Spline degrees.

Robust and Parallel Smoother for a Time-Parallel Multigrid Method The
smoother used in the time-parallel Multigrid method, introduced in [68], requires the
approximate solution of the space-time slab problems. Utilizing the tensor-product
structure, a decomposition into a series of spatial problems is performed. We propose
and analyze robust block preconditioners for the obtained spatial sub-problems. The
construction of the preconditioners follows the ideas in [237]. They allow for addi-
tional parallelization in the spatial dimensions by standard preconditioners for elliptic
problems.

Outline

The thesis is organized as follows:

• Chapter 2 introduces basic notations and definitions used in the subsequent chap-
ters. This chapter deals with recalling definitions and some important properties
regarding Sobolev spaces and variational equations. We introduce the concept
of Isogeometric Analysis, and conclude the chapter with the formulation of our
discrete problems in a continuous and discontinuous Galerkin setting.

• Chapter 3 deals with the IETI-DP method in a continuous Galerkin setting,
where the patches are coupled by C0 continuity. The presentation of the method
follows the lines in [183]. We proof a quasi-optimal condition number bound
with respect to the mesh-size h of the preconditioned IETI-DP operator, i.e.,
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κ ≤ C(1 + ln(H/h))2, where H is the patch diameter, for both the coefficient
and stiffness scaling. We conclude the chapter with numerical experiments for
two- and three-dimensional domains.

• Chapter 4 has a similar structure as Chapter 3, hence, after the formal definition
of the method, we provide the analysis of the condition number of the precon-
ditioned dG-IETI-DP operator and present numerical examples, validating the
theory. In the last section, we investigate segmentations with non-matching
interfaces, i.e., having gap and overlapping regions. Our contribution to this
section is the construction and implementation of IETI-DP methods on such
domains.

• Chapter 5 presents the parallelization of the cG-IETI-DP and dG-IETI-DP meth-
ods by means of MPI. We investigate their weak and strong scaling behaviour
on two- and three-dimensional domains. We study the influence of different
smoothness of the B-Spline basis in the interior of the patches on the scalability
of the methods. In order to fit the number of patches to the number of avail-
able processors, we base our parallelization strategy on a splitting of patches via
increasing the multiplicity of knots at the desired interfaces, i.e., reducing the
smoothness there to C0.

• Chapter 6 investigates the use of inexact solvers for the patch-local problems,
namely a p-robust Multigrid method and the Fast Diagonalization method, both
being robust in the spline degree p and mesh-size h. Throughout the section, we
only consider the continuous Galerkin case. In IgA, these methods are usually
applied to discretizations on a single patch. The combination with IETI-DP is
one way to extend these methods to multi-patch domains. Finally, we present
numerical results for two- and three-dimensional domains.

• Chapter 7 formulates the space-time variational formulation for parabolic initial-
boundary value problems in non-moving domains. We decompose the space-time
cylinder into time-slabs and introduce dG terms to couple the different time-
slabs. We shortly discuss efficient assembling strategies utilizing the tensor-
product structure of the patch-local matrices. Furthermore, we introduce the
time-parallel Multigrid method developed in [68]. The main part is the con-
struction of robust smoothers, which can be parallelized in space. We perform a
decomposition of the slab-local space-time problem into a series of spatial prob-
lems, for which we propose and analyze robust block-diagonal preconditioners.
We investigate parallelization in space, by applying IETI-DP methods to the
non-symmetric space-time problem, posed on the time-slabs.

• Chapter 8 draws a short conclusion, and presents possible extensions and further
work to the discussed topics.

Parts of this thesis have already been published by the author and corresponding
co-authors in peer-reviewed journals and proceedings as follows:
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• Parts of Chapter 3 are published in

[94] C. Hofer and U. Langer. Dual-primal isogeometric tearing and intercon-
necting methods. In B. Chetverushkin, W. Fitzgibbon, Y. Kuznetsov, P. Neit-
taanmäki, O. Pironneau, and J. Periaux, editors, Contributions to Partial Dif-
ferential Equations and Applications, volume 47 of Computational Methods in
Applied Sciences. Springer International Publishing, Berlin, Heidelberg, New
York, 2019.

• Parts of Chapter 4 are published in

[93] C. Hofer and U. Langer. Dual-primal isogeometric tearing and intercon-
necting solvers for multipatch dG-IgA equations. Computer Methods in Applied
Mechanics and Engineering, 316:2 – 21, 2017.

[91] C. Hofer. Analysis of discontinuous Galerkin dual-primal isogeometric tear-
ing and interconnecting methods. Mathematical Models & Methods in Applied
Sciences, 28(1):131–158, 2018.

[92] C. Hofer and U. Langer. Dual-primal isogeometric tearing and interconnect-
ing solvers for multipatch continuous and discontinuous Galerkin IgA equations.
PAMM, 16(1):747–748, 2016.

[97] C. Hofer, U. Langer, and I. Toulopoulos. Discontinuous Galerkin Isogeomet-
ric Analysis of Elliptic Diffusion Problems on Segmentations with Gaps. SIAM
Journal on Scientific Computing, 38:A3430 – A3460, 2016.

[99] C. Hofer and I. Toulopoulos. Discontinuous Galerkin Isogeometric Analysis
of elliptic problems on segmentations with non-matching interfaces. Computers
& Mathematics with Applications, 72(7):1811 – 1827, 2016.

• Parts of Chapter 5 are published in

[90] C. Hofer. Parallelization of continuous and discontinuous Galerkin dual-
primal isogeometric tearing and interconnecting methods. Computers & Math-
ematics with Applications, 74(7):1607 – 1625, 2017.
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[96] C. Hofer, U. Langer, and S. Takacs. Inexact Dual-Primal Isogeometric
Tearing and Interconnecting Methods. In Domain decomposition methods in
science and engineering XXIV. Springer, Berlin, Heidelberg, 2018. accepted.



Chapter 2

Preliminaries

In this chapter we introduce basic notation and definitions used in the following chap-
ters. We start recalling the definition and some important properties of Sobolev spaces.
Then we state the inhomogeneous Poisson equation as our model problem. We proceed
with a detailed description of Isogeometric Analysis, and conclude the chapter with
the formulation of our discrete problems in a continuous and discontinuous Galerkin
setting.

2.1 Model Problem

We start with the most basic definitions for formulating and analyzing variational
equations. After the introduction of Sobolev spaces, we shortly comment on trace
operators and recall two important inequalities for showing existence and uniqueness,
the Friedrichs and Poincaré inequalities. Finally, we derive the variational formulation
of our model problem and shortly discuss its well-posedness. For more details on
Sobolev spaces as well as related inequalities and properties, we refer the readers to
the monographs [1] and [60].

2.1.1 Function Spaces

Let Ω ⊂ Rd be a bounded Lipschitz domain with d = 1, 2, 3. We introduce the
Lesbesque spaces Lq(Ω) of all functions u : Ω→ R, such that ‖u‖Lq(Ω) <∞, where for
q ∈ [1,∞)

‖u‖qLq(Ω) :=

∫
Ω

|u|q dx,

and

‖u‖L∞(Ω) := inf{C ≥ 0 : |u(x)| ≤ C ∀x ∈ Ω a.e.}.

11
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These spaces are complete and therefore Banach spaces. In this work we only con-
sider the special case q = 2, which gives a Hilbert space, equipped with the inner
product

(u, v)L2(Ω) :=

∫
Ω

uv dx.

Based on these spaces, we can define spaces including weak derivatives of functions,
so-called Sobolev spaces. Let L1

loc(Ω) be the space of functions which are in L1(K) for
every compact subset K of Ω. If f ∈ L1

loc(Ω) and satisfies the identity∫
Ω

∂f

∂xi
φ dx = −

∫
Ω

f
∂φ

∂xi
dx ∀φ ∈ C∞0 (Ω),

then f possesses the weak derivative ∂f
∂xi

. This concept can be generalized to higher-
order derivatives. Let α = (α1, . . . , αd) ∈ Nd

0 be a multi-index and |α| =
∑d

i=1 αi. We
write

Dαf =
∂α1
∂xα1

1

. . .
∂αd
∂xαdd

f

for the α-th derivative of a function f . If f ∈ L1
loc(Ω) satisfies the identity∫

Ω

Dαfφ dx = (−1)|α|
∫

Ω

fDαφ dx ∀φ ∈ C∞0 (Ω),

then f possesses the higher-order weak derivative Dαf . Let l ∈ N0, the Sobolev space
W l,q is given by

W l,q(Ω) := {v ∈ Lq(Ω) : Dαv ∈ Lq(Ω) for all multi-indicesα, |α| ≤ l},

i.e., all functions in Lq(Ω), which possess the weak derivatives up to |α| ≤ l in Lq(Ω).
This space is equipped with the norm and semi-norm

‖v‖q
W l,q(Ω)

=
∑
|α|≤l

‖Dαv‖qLq(Ω) and |v|
q
W l,q(Ω)

=
∑
|α|=l

‖Dαv‖qLq(Ω),

respectively. The beforehand introduced definitions can be generalized to the case
q = ∞, see, e.g., [60]. The Sobolev spaces W l,q are again Banach spaces. As for
the Lebesque spaces, the special case q = 2 leads to a Hilbert space with the inner
product

(u, v)W l,2(Ω) :=
∑
|α|≤l

(Dαu,Dαv)L2(Ω),

and in the following we will denote this space by H l(Ω).
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The concept of Sobolev spaces can be generalized to spaces having a real Sobolev
index, i.e., Hs(Ω) with s ∈ R+, s ≥ 0. We split the index s in its integer part bsc
and its real part σ ∈ (0, 1) such that s = bsc+ σ. The norm of Hs(Ω) can be defined
as

‖u‖2
Hs(Ω) := ‖u‖2

Hbsc(Ω) +
∑
|α|=bsc

∫
Ω×Ω

|Dαu(x)−Dαu(y)|2

|x− y|d+2σ
d(x, y).

An alternative characterization of Sobolev spaces in case of Lipschitz domains Ω is as
closure of C∞ functions in the ‖ · ‖ norm, i.e.,

Hk(Ω) = C∞(Ω)
‖·‖

Hk(Ω) ∀k ≥ 0.

Moreover, we introduce

Hk
0 (Ω) = C∞0 (Ω)

‖·‖
Hk(Ω) ⊂ Hk(Ω) ∀k ≥ 0.

We have that H0(Ω) = H0
0 (Ω) = L2(Ω), and we will see in the following paragraphs

that H1
0 (Ω) consists of functions which vanish on ∂Ω. Furthermore, we can define

Sobolev spaces with negative index H−s(Ω) as the dual of Hs
0(Ω), being a subspace of

the space of distributions.

In general, functions in the Sobolev spaces Hs(Ω) do not have well defined point values
on ∂Ω, but one can define a trace operator. If Ω is a Lipschitz domain, then the trace
operator

γ0 : C∞(Ω)→ C∞(∂Ω) γ0u := u|∂Ω

has a unique extension as linear bounded operator H1(Ω) → H1/2(∂Ω), i.e., there
exists a CT > 0 such that

‖γ0u‖H1/2(∂Ω) ≤ CT‖u‖2
H1(Ω) ∀u ∈ H1(∂Ω),

see [183] and references therein. In the following, we will often use u|∂Ω for the trace
of u, i.e., γ0u. One can further characterize H1

0 (Ω) as

H1
0 (Ω) = {u ∈ H1(Ω) : γ0u = 0}.

This concept can be extended to the spaces Hk(Ω), k > 1, and we can characterize
the space Hk

0 (Ω) of functions in Hk(Ω) where all normal-derivatives up to order k− 1
vanish on ∂Ω. The normal derivative of a function v is denoted by ∂v

∂n
.

We conclude this section with two important inequalities, Friedrichs’ inequality and
Poincaré’s inequality. For the proof we refer, e.g., to [183] and [29].

Lemma 2.1. Let ΓD be a subset of ∂Ω with |ΓD| > 0. Then, for any function u ∈
H1(Ω) with u|ΓD = 0, we have the Friedrich inequality

‖u‖L2(Ω) ≤ CF |u|H1(Ω),

where the constant CF depends only on Ω and ΓD.



14 CHAPTER 2. PRELIMINARIES

Lemma 2.2. For any function u ∈ H1(Ω) with zero mean, i.e.
∫

Ω
u dx = 0, we have

the Poincaré inequality

‖u‖L2(Ω) ≤ CP |u|H1(Ω),

where the constant CP depends only on Ω.

Alternatively, Lemma 2.2 can be also formulated in the following ways

‖u− uΩ‖L2(Ω) ≤ CP |u|H1(Ω) ∀u ∈ H1(Ω),

where uΩ := |Ω|−1
∫

Ω
u dx, and

‖u‖L2(Ω) ≤

(
C2
P |u|2H1(Ω) + |Ω|−1

(∫
Ω

u dx

)2
)1/2

∀u ∈ H1(Ω).

2.1.2 Variational Formulation

In this thesis, we consider the following second-order elliptic boundary value problem
in a bounded Lipschitz domain Ω ⊂ R, d ∈ {2, 3}, as a typical model problem: find
u : Ω→ R such that

− div(α∇u) = f in Ω,

u = 0 on ΓD,

α
∂u

∂n
= gN on ΓN ,

(2.1)

with given, sufficient smooth data f, gN and α, where the coefficient α is uniformly
bounded from below and above by some positive constants αmin and αmax, respec-
tively. The boundary ∂Ω of the computational domain Ω consists of a Dirichlet part
ΓD of positive boundary measure and a Neumann part ΓN . Without loss of gener-
ality, we assume homogeneous Dirichlet conditions. This can always be obtained by
homogenization.

We multiply the partial differential equation (2.1) by a test function v ∈ C∞(Ω) that
vanish on the Dirichlet boundary, and integrate over Ω. By applying integration by
parts to the term with the second-order derivatives, we obtain the following variational
problem: find u ∈ VD := {u ∈ H1(Ω) : u|ΓD = 0 on ΓD} such that

a(u, v) = 〈F, v〉 ∀v ∈ VD. (2.2)

The bilinear form a(·, ·) : VD × VD → R and the linear form 〈F, ·〉 : VD → R are given
by the expressions

a(u, v) :=

∫
Ω

α∇u∇v dx and 〈F, v〉 :=

∫
Ω

fv dx+

∫
ΓN

gNv ds,

respectively. The standard tool to show existence and uniqueness of a solution to (2.2)
is the Lemma of Lax-Milgram.
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Lemma 2.3. Let X be a Hilbert space with the norm ‖ · ‖. Let the bilinear form
a(·, ·) : X ×X → R be continuous, i.e., there exists a positive constant c such that

a(u, v) ≤ c ‖u‖X‖v‖X ∀u, v ∈ X,

and coercive on X, i.e., there exists a positive constant c such that

a(u, u) ≥ c ‖u‖2
X ∀u ∈ X.

Then, for any F ∈ X∗, the variational problem,

find u ∈ X : a(u, v) = 〈F, v〉 ∀v ∈ X, (2.3)

has a unique solution u which fulfils the a-priori estimate

‖u‖X ≤ c−1 ‖F‖X∗

Proof. See, e.g., [183] or [29].

If the bilinear form is additionally symmetric, i.e., a(u, v) = a(v, u), then its possible
to show equivalence to a minimization problem. This is known as Ritz Lemma.

Lemma 2.4. Let X be a Hilbert space with the norm ‖ · ‖, and let the bilinear form
a(·, ·) : X×X → R fulfil the assumptions of Lemma 2.3, and be additionally symmetric.
Furthermore, let F : X → R be a bounded linear functional. Then the unique solution
of (2.3) is the unique minimizer of the Ritz energy functional

u = argmin
v∈X

1

2
a(v, v)− 〈F, v〉,

and vice versa.

Proof. See, e.g., [29].

It is easy to check that equation (2.2) fulfils the assumptions of Lemma 2.3. The
coercivity follows from Lemma 2.1.

2.2 Isogeometric Analysis

B-Splines and NURBS play an important role in computer aided design and computer
graphics. Here, we will use these splines for building our trial and test spaces for
the Galerkin approximations to (2.2), as proposed in [107], see also the monograph
[40]. This section provides the definition of B-Splines in one dimension and in higher
dimensions via a tensor-product structure. We will give an overview of isogeometric
discretization, and summarize the approximation properties of these B-Splines and
NURBS. Finally, we state important inequalities, like the discrete trace and inverse
inequalities. A more detailed introduction to IgA can be found in [40] and [16], and
for more informations on B-Splines and NURBS we refer to [185].
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2.2.1 Univariate B-Splines

First we start with the definition of a knot vector, which is one of the important
building blocks of a B-Spline.

Definition 2.5. Let 0 = ξ1 ≤ . . . ≤ ξm = 1 be a finite, real-valued, monotonically
increasing sequence of real numbers. The set Ξ = {ξ1, . . . , ξm} is called knot vector.
An entry ξi, i ∈ {1, . . . ,m}, is called knot, and is called an interior knot if (ξ1 <
ξi)∧ (ξi < ξm). If r knots have the same value, we say that the knot has multiplicity r,
i.e., r = |{j ∈ {1, . . . ,m} : ξj = ξi}| is the cardinal number of the set {j ∈ {1, . . . ,m} :
ξj = ξi}. The interval between two knots is called knot span. A knot span is called
empty if ξi = ξi+1 and is called interior if ξ1 < ξi+1 ∧ ξi < ξm. The knots provide a
partitioning of the parameter domain into elements. If the knots are equally spaced,
we call it uniform, otherwise non-uniform.

Based on a knot vector, we can define the B-Spline functions recursively.

Definition 2.6. Let p ∈ N and Ξ be a knot vector with multiplicity of any interior
knot of at most p. Then, by the Cox-de Boor recursion formula, we can define the
M = m− p− 1 univariate B-Spline basis functions on [ξ1, ξm] as follows:

N̂ i,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
, (2.4)

N̂ i,p(ξ) =
ξ − ξi
ξi+p − ξi

N̂ i,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

N̂ i+1,p−1(ξ), (2.5)

where i = 1, . . . ,M . If in (2.5) appears an expression 0/0 we define it as 0. The
number p is then called degree of the B-Spline.

Definition 2.7. Let Ξ be a knot vector. We say that the knot vector is open if the
multiplicity of the first knot and the last knot are p+ 1, whereas the multiplicity of the
other knots is at most p.

An example of B-Splines defined on an open knot vector is presented in Figure 2.1.
B-Splines defined on open knot vectors have the property that they are interpolatory
at the boundary of the parameter interval [0, 1], while all other basis functions are zero
there. Hence it is possible to distinguish between basis functions corresponding to the
interior and the boundary. Since later on, we will only be interested in C0 continuity
across the interfaces, we restrict our analysis to open knot vectors.

Assumption 1. We consider all knot vectors used as open knot vectors.

We summarize some important properties of B-Splines:

1. The B-Splines basis functions N̂ i,p form a partition of unity, i.e.
M∑
i=1

N̂ i,p(ξ) ≡ 1
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N 1,2

N 2,2
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Figure 2.1: Illustration of B-Spline basis of degree 2, corresponding to the knot vector
Ξ = {0, 0, 0, 1/5, 2/5, 3/5, 3/5, 4/5, 1, 1, 1}. The repeated knot ξi = 3/5 with multiplic-
ity 2 leads to a nodal basis function at ξi.

for all p = 0, 1, . . . .

2. The B-Spline basis functions are non-negative, i.e.

∀ξ ∈ [ξ1, ξm]∀i ∈ {1, . . . ,M} : N̂ i,p(ξ) ≥ 0.

3. The support supp N̂ i,p of N̂ i,p is local:

supp N̂ i,p ⊆ (ξi, ξi+p+1), ∀i ∈ {1, . . . ,M}.

where i ∈ {1, . . . ,m− 1}.

4. On each knotspan the B-Spline basis functions are piecewise polynomials of
degree p and, without multiple knots in the interior, Cp−1 continuous. At a
knot with multiplicity r, it has Cp−r continuity. Hence, the continuity is reduced
in the presence of multiple knots.

5. If a knot ξl has the multiplicity r = p, then there is one basis function N̂ i,p, such
N̂ i,p(ξl) = 1 and all other basis functions have zero value there, i.e., the basis is
interpolatory at ξl.

The proofs are elementary, and we refer to [185] for a more detailed discussion. Com-
paring with finite elements, the B-Splines have very similar properties. They form a
partition of unity, they are piecewise polynomials, and they have local support. How-
ever, one significant difference is that the B-Splines are not a nodal basis and their
support is not restricted to one element, but is within p neighbouring elements. When
increasing the multiplicity of all interior knots up to p, one basically obtains again a
nodal basis, where the support of each function is only one element. However, this is
not the preferable way of working with B-Splines.
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We point out that the order of approximation does not depend on the smoothness of
the B-Splines. Hence, using B-Splines of maximal smoothness is optimal in the sense
of approximation order and number of degrees of freedom. To be more precise, a basis
with maximal smoothness has O(n + p) basis functions, whereas, the C0 version has
O(np), where n is the number of interior knot-spans and p the degree.

2.2.2 Tensor-Product B-Splines

Until now, we have considered B-Splines only in one dimension. There are several
ways, how to generalize the concept to multi-dimensional case. One straightforward
way for the construction is by taking the tensor-product of one-dimensional B-Splines,
which is the method of choice for many applications. It is easy to see that a tensor-
product does not allow local refinement of a single element. One has to consider other
concepts of generalizations in order to handle local refinement appropriately like T-
Splines, HB-Splines or THB-Splines, see, e.g., [73] and [15]. Let us now formally define
tensor-product B-Splines.

Definition 2.8. Let (p1, . . . , pd) be a vector in Nd, and let, for all l = 1, . . . , d, Ξl be
a knot vector. Furthermore, we denote the il univariate B-Spline defined on the knot
vector Ξl by N̂ l

il,p
(ξl). Then the d-dimensional tensor-product B-Spline (TB-Spline) is

defined by

N̂ (i1,...,id),(p1,...,pd)(ξ) =
d∏
l=1

N̂ l
il,pl(ξ

l). (2.6)

In order to avoid cumbersome notations we will again denote the tensor-product B-
Spline by N̂ i,p, and interpret i and p as multi-indices. Additionally, we define the set
of multi-indices by I := {(i1, . . . , id) : il ∈ {1, . . . ,Ml} ∀l ∈ {1, . . . , d}}, where Ml

are the number of B-Spline basis function for dimension l. Due to the tensor-product
structure, the TB-Splines posses similar properties as the univariate B-Splines.

In case of TB-Splines, we will call a non-empty knotspan Q̂i = (ξi, ξi+1), i ∈ IQ̂ also
cell, where IQ̂ = {i ∈ I|il 6= Ml}, and (ξi, ξi+1) is defined as

(ξi, ξi+1) := (ξ1
i1 , ξ

1
i1+1)× . . .× (ξdid , ξ

d
id+1).

The mesh created by these cells is denoted by Q̂h, i.e.

Q̂h := {(ξi, ξi+1)|i ∈ IQ̂}.

It is important to note that manipulating one univariate knot vector influences the
TB-Splines globally. For example, if we increase the multiplicity of a certain knot
ξ∗, we obtain reduced continuity across the plane {x |x ∈ [0, 1]d, xi = ξ∗}. In the
following, we only consider TB-Splines and will denote them as B-Splines.
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Similar as in Section 2.2.1, a basis with maximal smoothness has O((n+p)d) basis func-
tions, whereas the basis with only C0 continuity has O((np)d) basis functions, where n
is the number of interior knot spans, p the B-Spline degree and d the dimension.

2.2.3 B-Spline Geometries and Geometrical Mapping

The B-Splines are used to represent a d-dimensional geometry in Rg, where d ≤ g.
However, in the following, we will restrict ourselves to the case d = g ∈ {2, 3}.

Definition 2.9. Let {N̂ i,p}i∈I be a family of B-Spline basis functions. Given control
points Pi ∈ Rd, i ∈ I, the B-Spline volume is defined by

G : Ω̂ := (0, 1)d → Rd

G(ξ) :=
∑
i∈I

PiN̂ i,p(ξ).

We call G the geometrical mapping, the domain Ω̂ of G parameter domain, and the
image Ω := G(Ω̂) ⊂ Rd physical domain. The physical domain is the computational
domain. The geometrical mapping is called regular if det∇G(ξ) 6= 0, ∀ξ ∈ [0, 1]d.

The knot vector Ξ provides a partition of the parameter domain into cells, and, by
means of the geometrical mapping, we receive a corresponding partition of the physical
space into cells Qi as well, where Qi = G(Q̂i) for Q̂i ∈ Q̂h. If we collect all these cells,
we obtain a mesh

Qh := {Q = G(Q̂)|Q̂ ∈ Q̂h}

for the physical domain Ω As is the case of finite elements, we need some restrictions
imposed on the mesh.

Definition 2.10. A family of meshes {Qh}h∈H is called quasi uniform if there exists
a constant θ ≥ 1 for all Qh ∈ {Qh}h∈H , such that θ−1 ≤ diam(Q)/diam(Q′) ≤ θ for
all Q,Q′ ∈ Qh. The characteristic mesh-size of Q̂h and Qh is denoted by ĥ and h,
respectively.

In this theses, we do not investigate local refinement. Therefore, it is enough to assume
quasi uniform meshes.

Assumption 2. All considered meshes are quasi uniform.

Moreover, we make the following assumption on the gradient of G.

Assumption 3. We assume that the geometrical mapping G has the properties

‖∇G‖L∞(Ω̂) ≈ H and ‖ det∇G‖L∞(Ω̂) ≈ Hd,

where the hidden constants are independent of the mesh-size h and the diameter H of
the domain Ω.
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2.2.4 Multi-Patch Geometries

Up to this point, we have just considered a single domain being the image of the
geometrical mapping G. In many practical applications, it is not possible to describe
the physical computational domain Ω just with a single geometrical mapping G. For
example, domains with holes have to be represented with several patches. Moreover,
for the stability and accuracy of the numerical method, it is advantageous to have
patches, which are topologically equivalent to a cube. Therefore, we represent the
physical domain Ω by N non-overlapping domains Ω(k), called patches. Each Ω(k)

is the image of an associated geometrical mapping G(k), defined on the parameter
domain Ω̂ := (0, 1)d, i.e., Ω(k) = G(k)(Ω̂) for k = 1, . . . , N , and Ω =

⋃N
k=1 Ω

(k)
. Clearly,

each patch has a mesh Q(k)
h in the physical domain and a mesh Q̂(k)

h in the parameter
domain, consisting of cells Q(k) and Q̂(k).

We denote the interface between the two patches Ω(k) and Ω(l) by F (kl), and the
collection of all interfaces by Γ, i.e.,

F (kl) = Ω
(k) ∩ Ω

(l) and Γ :=
⋃
l>k

F (kl).

Furthermore, the boundary of the domain is denoted by ∂Ω. The interface Γ is often
called skeleton. We denote the set of all indices l such that Ω(k) and Ω(l) have a
common interface F (kl) by I(k)

F . We restrict ourselves to the case that the geometry is
C0 continuous at the interfaces. For certain applications, such as higher-order PDEs,
it may be necessary to consider higher smoothness of the geometry.

At the boundary of a patch Ω(k), the B-Splines based on open knot vectors are interpo-
latory. This is an useful property, when incorporating Dirichlet boundary conditions
and coupling patches in a continuous manner. However, it is quite hard to couple
patches in a smooth way, e.g., higher geometric continuity Gk, k > 1, see e.g., [113]
and references therein.

2.2.5 Isogeometric Discretization

The key point in isogeometric analysis is the use of the same basis functions for repre-
senting the geometry as well as for the solution space. This motives the definition of
the basis functions in the physical domain via the push-forward of the basis functions
in the parameter domain, i.e.,

N i,p(x) := N̂ i,p ◦G−1(x).

Thus, we define our discrete function space Vh by

Vh := span{N i,p}i∈I ⊂ H1(Ω). (2.7)
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The function uh from the IgA space Vh can therefore be represented in the form

uh(x) =
∑
i∈I

uiN i,p(x).

Hence, each function uh(x) is associated with the vector u = (ui)i∈I . This map is
known as Ritz isomorphism. One usually writes this relation as uh ↔ u, and we will
use it in the following without further comments. For completeness, we also define as
Sh the space of spline functions in the parameter domain, i.e.,

Sh = span{N̂ i,p}i∈I ⊂ H1(Ω̂).

If we consider a single patch Ω(k) of a multi-patch domain Ω, we will use the notation
V

(k)
h , N

(k)
i,p , N̂

(k)
i,p , G

(k), . . . with the analogous patch-wise definitions. For example, the
finite dimensional function space V (k)

h is defined as

V
(k)
h = span{N (k)

i,p }i∈I(k) ⊂ H1(Ω(k)). (2.8)

To keep notation simple, we will use hk and ĥk instead of h(k) and ĥ(k), respec-
tively.

2.2.6 Approximation Properties

This section lists some important properties of the approximation power of B-Splines
from [14]. First of all, we state a result about the relation of theHm norms between the
function in the physical and the parameter domain, summarized in Proposition 2.11
and Corollary 2.12, which are proved in [14], see Lemma 3.5.

Proposition 2.11. Let m be a non-negative integer, Q̂ ∈ Q̂h and Q = G(Q̂). Then
the equivalence inequalities

|v̂|Hm(Q̂) ≤ Cshape
∥∥det∇G−1

∥∥1/2

L∞(Q)

m∑
j=0

‖∇G‖j
L∞(Q̂)

|v|Hj(Q),

|v|Hm(Q) ≤ Cshape ‖det∇G‖1/2

L∞(Q̂)
‖∇G‖−m

L∞(Q̂)

m∑
j=0

|v̂|Hj(Q̂).

(2.9)

hold for all v ∈ Hm(Q) and their counterparts v̂ ∈ Hm(Q̂), where Cshape are positive
generic constants that only depend on the shape of the geometry Ω and its parametriza-
tion.

From Proposition 2.11, one obtains

C1‖v̂‖Hm(Q̂) ≤ ‖v‖Hm(Q) ≤ C2‖v̂‖Hm(Q̂), (2.10)
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where the constants C1, C2 depend only on ∇G and the shape of the geometry Ω. We
note that the 0-order terms in the upper bounds of Proposition 2.11 are not needed
for m > 0. They are incorporated in order to give a unified presentation for m ≥ 0.
Hence, as a special case of Proposition 2.11, we obtain the following estimates for the
L2 norm and H1 semi-norm

Corollary 2.12. Let Q̂ ∈ Q̂h and Q = G(Q̂). For v ∈ L2(Q), we have

‖v̂‖L2(Q̂) ≤ Cshape
∥∥det∇G−1

∥∥1/2

L∞(Q)
‖v‖L2(Q) ,

‖v‖L2(Q) ≤ Cshape ‖det∇G‖1/2

L∞(Q̂)
‖v̂‖L2(Q̂) ,

(2.11)

and, for v ∈ H1(Q), we can write

|v̂|H1(Q̂) ≤ Cshape
∥∥det∇G−1

∥∥1/2

L∞(Q)
‖∇G‖L∞(Q̂) |v|H1(Q),

|v|H1(Q) ≤ Cshape ‖det∇G‖1/2

L∞(Q̂)
‖∇G‖−1

L∞(Q̂)
|v̂|H1(Q̂),

(2.12)

where Cshape is as in Proposition 2.11.

The next results describes the quantitative approximation power of B-Splines. It
basically states that the B-Splines space has the same approximation power as a FE
space of same degree. We do not present any further technical details. We refer
the reader to [14], [24], [35] and [208] for a more comprehensive discussion regarding
approximation properties of B-Splines and NURBS. In particular, for the proof of the
following theorem we refer to Corollary 3.1 in [208], see also Theorem 3.2 in [14].

Theorem 2.13. Let v ∈ H l(Ω) be a function defined in the physical domain Ω. Given
an integer k such that 0 ≤ k ≤ p+1, k ≤ l, and k ≤ s+1, where s is the smoothness of
the considered B-Spline basis. Then there exists a projection operator ΠVh : L2(Ω) →
Vh such that the approximation error estimates

|v − ΠVhv|
2
Hk(Ω) ≤ Chδ−k|v|2Hl(Ω),

holds, where δ := min(p+ 1, l) and the constant C is independent of h.

2.2.7 Important Discrete Inequalities

In this section, we want to formulate important inequalities for IgA, which are well
known for FE. This inequalities have been proven in the more general case of having
W l,q(Ω) spaces, e.g., in [148]. For the purpose of this theses, we reformulate them in the
case of Sobolev spaces H l(Ω) = W l,2(Ω). We refer to [59] and [14] for more discussions
on discrete trace and inverse inequalities in IgA. We start with the continuous trace
inequality, see Lemma 1 in [148].
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Lemma 2.14. Let u ∈ H l(Ω), l > 1, there is a constant C, which depends on the
problem data and the constants from (2.10), but not on h, such that for any face
F ⊂ ∂Ω

‖v‖L2(F ) ≤ C
(
h−1‖v‖L2(Ω) + h‖∇ v‖L2(Ω)

)
.

We follow the list with the discrete trace inequality for v ∈ Sh, see Lemma 3 in
[148].

Lemma 2.15. For all v̂ ∈ Sh and for all F̂ ⊂ ∂Q̂, there is a constant C, which
depends on the mesh quasi-uniformity constant θ from Definition 2.10, such that

‖v̂‖L2(F̂ ) ≤ Cĥ−
1
2‖v̂‖L2(Q̂).

Finally, we end this section with a typical inverse inequality, see Lemma 2 in [148].

Lemma 2.16. For all v̂ ∈ Sh, there is a constant C, which depends on the mesh
quasi-uniformity constant θ from Definition 2.10, such that

‖∇ v̂‖L2(Q̂) ≤ Cĥ−1‖v̂‖L2(Q̂).

To summarize, we obtain the same h dependence as for FE, where the constant C
depends on the smoothness k and the degree p. By means of Proposition 2.11 and
Corollary 2.12, we obtain the corresponding inequalities for the physical domain, where
the constant C additionally depends on the geometrical mapping G.

2.3 Galerkin Discretizatons

A common and well understood framework for obtaining approximate solutions to
variational equations is to use the Galerkin principle. We look for approximations in
a finite dimensional space Vh,D, and choose the test functions from the same space.
One could choose different spaces for the solution and test space, leading to the so-
called Petrov-Galerkin methods. For the purpose of this thesis, we restrict ourselves
to the classical Galerkin methods. Note, Vh,D is not necessarily a subspace of VD. If
Vh,D ⊂ VD, we call the discretization continuous Galerkin (cG) method. Otherwise,
we investigate the so-called discontinuous Galerkin (dG) method.

2.3.1 Continuous Galerkin Discretization

In Section 2.1.2, we derived the weak formulation (2.2) of (2.1) in the following varia-
tional setting: find u ∈ VD

a(u, v) = 〈F, v〉 ∀v ∈ VD.
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We are considering the finite dimensional subspace V cG
h of H1(Ω) given by

V cG
h := {v | v|Ω(k) ∈ V (k)

h } ∩H
1(Ω).

Since, we restrict ourselves to homogeneous Dirichlet conditions, we look for the
Galerkin approximate uh from V cG

D,h ⊂ V cG
h , where V cG

D,h contains all functions, which
vanish on the Dirichlet boundary. The continuous Galerkin IgA scheme reads as fol-
lows: find uh ∈ V cG

D,h such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ V cG
D,h. (2.13)

Since V cG
D,h ⊂ VD, the continuous coercivity implies the discrete one. Hence, there

exists a unique IgA solution uh ∈ V cG
D,h of (2.13). Moreover, one can show that this

solution converges to the solution u ∈ VD of (2.2) for h tends to 0. A basis for this
space is given by the B-Spline functions {N i,p}i∈I0 , where I0 contains all indices of I
which do not have a support on ΓD. Once a basis is chosen, the continuous Galerkin
IgA scheme (2.13) is equivalent to the linear system of algebraic equations

Ku = f , (2.14)

where K = (Ki,j)i,j∈I0 and f = (f i)i∈I0 denote the stiffness matrix and the load
vector, respectively, with Ki,j = a(N j,p, N i,p) and f i = 〈F,N i,p〉, and u is the vector
representation of uh given by the IgA isomorphism. Moreover, we have the relation
a(uh, vh) = (Ku,v)`2 with euclidean inner product (·, ·)`2 . In order to keep the no-
tation simple, we will reuse the symbol I for the set I0 in the following. Note, the
matrix K is symmetric and positive definite (SPD).

In the conforming case, the error analysis is done by means of Cea’s Lemma.

Lemma 2.17. Let the assumptions of Lemma 2.3 be fulfilled, let u ∈ VD and uh ∈ V cG
D,h

be the solution of (2.2) and (2.13), respectively. Then we have

‖u− uh‖H1(Ω) ≤
c

c
inf

vh∈V cGD,h
‖u− vh‖H1(Ω).

Proof. See, e.g., [29].

This means that we can estimate the error by the best approximation. By using a
projection operator ΠV cGD,h

: L2(Ω) → V cG
D,h, as in Section 2.2.6 we can further estimate

the best approximation error by the quasi-interpolation error, i.e.,

‖u− uh‖H1(Ω) ≤
c

c
‖u− ΠV cGD,h

u‖H1(Ω).

By means of Theorem 2.13, we obtain the a-priori error bound

‖u− uh‖H1 ≤ Chγ‖u‖Hl(Ω),
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provided that u ∈ H l(Ω), where γ = min(p+1, l)−1 and p is the B-Spline degree.

Regarding efficient solution techniques by means of iterative solvers, the (spectral)
condition number κ2, defined as

κ2(K) := ‖K‖2‖K−1‖2,

plays an important role. Certainly, one can define different condition numbers based
on different norms. If not specified, we only consider the spectral condition number κ2

and denote it by κ. In the case of a symmetric matrix, the condition number is given
by the ratio of the largest to the smallest eigenvalue (by moduli).

Considering the stiffness matrix K and mass matrixM := ((N̂ i,p, N̂ j,p)L2)i,j∈I on the
parameter domain, one can show the following bounds on the condition number

κ(K) ≤ Ch−2pd4pd

κ(M ) ≤ Cp2(d−1)4dp,

where d is the dimension, see, e.g., [194], [66] and references therein.

2.3.2 Discontinuous Galerkin Discretization

In Section 2.3.1, we used functions which are continuous on the whole multi-patch
domain Ω. In this section, we want to relax this restriction and consider spaces,
which are conforming on each patch, but are not necessarily continuous across the
patch interfaces. For the dG-IgA scheme, we again use the spaces V (k)

h as defined
in (2.8), whereas now discontinuities are allowed across the patch interfaces F (kl).
The continuity of the function value and its co-normal derivative are then enforced
in a weak sense by adding additional terms to the bilinear form. This situation is
especially important when we consider non-matching grids on different patches across
the interface or gaps and overlaps due to segmentation crimes, see Section 4.4.

We define the dG-IgA space as

V dG
h := {v | v|Ω(k) ∈ V (k)

h }. (2.15)

We now follow the notation used in [50] and [52]. A comprehensive study of dG
schemes for FE can be found in [188] and [41]. For the analysis of dG-IgA schemes,
we refer to [148] and [144].

Dirichlet boundary conditions can be handled in different ways. We can use the dG
technique to incorporate them in a weak sense, see, e.g., [5] and [6]. This method
for imposing Dirichlet boundary conditions was already proposed by Nitsche [177].
Another method consists in enforcing them in a strong sense via an L2 projection
and homogenization. In this paper, for simplicity of presentation, we will follow the
latter one, where we assume that the given Dirichlet data can exactly be represented
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by means of B-Splines. Hence, we define V dG
D,h as the space of all functions from V dG

h

which vanish on the Dirichlet boundary ΓD.

Having these definitions at hand, we can define the discrete problem based on the
Symmetric Interior Penalty (SIP) dG formulation as follows: find uh ∈ V dG

D,h such
that

ah(uh, vh) = 〈F, vh〉 ∀vh ∈ V dG
D,h, (2.16)

where

ah(u, v) :=
N∑
k=1

a(k)
e (u, v) and 〈F, v〉 :=

N∑
k=1

∫
Ω(k)

fv(k) dx+

∫
Γ

(k)
N

gNv
(k) ds,

a(k)
e (u, v) := a(k)(u, v) + s(k)(u, v) + p(k)(u, v),

and

a(k)(u, v) :=

∫
Ω(k)

α(k)∇u(k)∇v(k) dx,

s(k)(u, v) :=
∑
l∈I(k)
F

∫
F (kl)

α(k)

2

(
∂u(k)

∂n
(v(l) − v(k)) +

∂v(k)

∂n
(u(l) − u(k))

)
ds,

p(k)(u, v) :=
∑
l∈I(k)
F

∫
F (kl)

δα(k)

hkl
(u(l) − u(k))(v(l) − v(k)) ds.

Here, δ is a positive, sufficiently large penalty parameter, and hkl is the harmonic
average of the adjacent mesh-sizes, i.e., hkl = 2hkhl/(hk +hl). We equip V dG

D,h with the
so-called dG norm

‖u‖2
dG :=

N∑
k=1

α(k)
∥∥∇u(k)

∥∥2

Ω(k) +
∑
l∈I(k)
F

δα(k)

hkl

∫
F (kl)

(u(k) − u(l))2ds

 . (2.17)

Furthermore, we define the bilinear forms

dh(u, v) :=
N∑
k=1

d(k)(u, v) and d(k)(u, v) := a(k)(u, v) + p(k)(u, v)

for later use. We note that ‖uh‖2
dG = dh(uh, uh). We are now able to show existence

and uniqueness of a solution to (2.16). The following Lemma is an equivalent statement
of Lemma 2.1 in [52] for IgA, and the proof is based on the results in [148].

Lemma 2.18. Let δ be sufficiently large. Then there exist two positive constants γ0

and γ1 which are independent of hk, Hk, δ, α
(k) and uh such that the inequalities

γ0d
(k)(uh, uh) ≤ a(k)

e (uh, uh) ≤ γ1d
(k)(uh, uh), ∀uh ∈ V dG

D,h (2.18)
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are valid for all k = 1, 2, . . . , N . Furthermore, we have the inequalities

γ0 ‖uh‖2
dG ≤ ah(uh, uh) ≤ γ1 ‖uh‖2

dG , ∀uh ∈ V dG
D,h. (2.19)

Proof. Rewriting the proofs of Lemma 6 and Lemma 7 in [148] for a single patch gives
the desired inequalities (2.18). In order to show the boundedness, we additionally have
to apply the inverse inequality ‖∇uh‖2

L2(F (kl)) ≤ Ch−1
k ‖∇uh‖

2
L2(Ω(k)), see Lemma 2.16,

to the term
∑

l∈I(k)
F
α(k)hk ‖∇uh‖2

L2(F (kl)) appearing in the bound of Lemma 7 in [148].
We then arrive at the estimate∑

l∈I(k)
F

α(k)hk ‖∇uh‖2
L2(F (kl)) ≤ C

∑
l∈I(k)
F

α(k) ‖∇uh‖2
L2(Ω(k)) .

Hence, the right-hand side can be bounded by d(k)(uh, uh). Formula (2.19) immediately
follows from (2.18), which concludes the proof.

We note that, in [148], the results were obtained for the Incomplete Interior Penalty
(IIP) scheme. An extension to SIP-dG and the use of harmonic averages for h and/or
α are discussed in Remark 3.1 in [148], see also [144].

A direct implication of (2.19) is the well-posedness of the discrete problem (2.16)
that immediately follows from Lax-Milgram’s lemma. The consistency of the method
together with quasi-interpolation estimates for B-spline quasi-interpolant lead to the
following a-priori error estimate, as established in [148].

Theorem 2.19. Let u ∈ H1(Ω) ∩
∏N

k=1W
l+1,q(Ω(k)) with some q ∈ (min(1, 2d/(d +

2l)), 2] and some integer l ≥ 1, solves (2.2), and let uh ∈ V dG
D,h solves the discrete

problem (2.16). Then the following a-priori error estimate holds

‖u− uh‖2
dG ≤

N∑
k=1

C(k)
(
hk

2r +
∑
j∈I(k)
F

α(k)hk
hj
hk

2r
)
,

where r = min(l + (d
2
− d

q
), p), and C(k) is a positive constant which depends on p,

‖u‖W l+1,q(Ω(k)), and maxl0≤l+1 ‖∇l0G(k)‖L∞(Ω(k)), but not on h.

As explained in Section 2.3.1, we choose the B-Spline functions {N i,p}i∈I0 as basis for
the space V dG

D,h, see (2.15), where I0 contains all indices of I, which do not have a
support on the Dirichlet boundary. Hence, the dG-IgA scheme (2.16) is equivalent to
the system of linear equations

Ku = f , (2.20)

where K = (Ki,j)i,j∈I0 and f = (f i)i∈I0 denote the stiffness matrix and the load
vector, respectively, with Ki,j = ah(N j,p, N i,p) and f i = 〈F,N i,p〉, and u is the vector
representation of uh. As in the previous section, we reuse the symbol I for I0.
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To summarize, for both the cG and dG formulation, we choose the B-Spline function
{N i,p}i∈I as basis for the space V X

D,h, X ∈ {cG, dG}. In the cG case, the basis functions
on the interface are identified accordingly to obtain a conforming subspace of VD.
For the remainder of this thesis, we drop the subscript D for the symbols VD and
V X
D,h, X ∈ {cG, dG}. Moreover, we will also drop the superscript X ∈ {cG, dG} and

use the symbol Vh for both formulations. Depending on the considered formulation,
one needs to use the right space V X

h , X ∈ {cG, dG}. Finally, we are mostly interested in
the approximate solution uh, hence, will also omit the subscript h in uh to simplify the
notation. If a distinction has to be made, we will write the subscript explicitly.



Chapter 3

Continuous Galerkin IETI-DP
Methods

This chapter is devoted to the continuous Galerkin dual-primal isogeometric tearing
and interconnecting methods (cG-IETI-DP). These methods were first introduced in
[137] for the case of having only vertex primal variables in two dimensions. Following
the ideas and notation in [183] for the FE version of IETI-DP, we extend the cG-
IETI-DP algorithm to three-dimensional domains and more general primal variables
such as continuous face or edge averages. The presented approach considers energy
minimizing primal subspaces, where the primal space is orthogonal to the dual space
with respect to the Schur complement S. The advantage is a block diagonal structure
of one of the operators involved in the IETI-DP operator. Moreover, we incorporate
the primal variables via constraints.

In Section 3.1, we will present the derivation of the method as well as important imple-
mentation details. The analysis of the condition number will be given in Section 3.3
and follows the proof in [19] for the BDDC preconditioner. We consider the case
of having a two-dimensional domain, globally constant diffusion coefficient and only
vertex values as primal variables. Finally, we present numerical results for two- and
three-dimensional domains and jumping diffusion coefficients in Section 3.4.

3.1 Derivation of the Method

The starting point for the derivation is the discrete variational formulation (2.13). In
the following, let Vh be the conforming IgA space which fulfils the Dirichlet boundary
conditions as defined in Section 2.3.1. Furthermore, we denote the B-Spline basis of
this space by {N i,p}i∈I . The idea of IETI-DP is to introduce local spaces, which
are independent of each other. The coupling and the continuity across interfaces is
received via additional constraints. It is common practice to formulate the method in

29
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terms of the Schur complement with respect to dofs on the interface Γ. This requires
a splitting of the space Vh into a space corresponding to the interface dofs (B) and the
interior dofs (I). It is important to note that in the implementation the calculation
of the Schur complement is not required. The presentation of this section follows the
lines in [19] and [183].

3.1.1 Schur Complement System

Since we are using open knot vectors, we can distinguish between basis functions on
the interface Γ and in the interior of each patch Ω(k), k = 1, . . . , N . We introduce the
space of splines associated to the interface by

VΓ,h := span{N i,p| supp {N i,p} ∩ Γ 6= ∅, i ∈ I} ∩H1(Ω) ⊂ V, (3.1)

and for each patch Ω(k) the corresponding space associated to its interior by

V
(k)
I,h := V

(k)
h ∩H1

0 (Ω(k)). (3.2)

These spaces allow us to formulate the following decomposition

Vh =
N∏
k=1

V
(k)
I,h ⊕H (VΓ,h) ,

where H is the discrete IgA harmonic extension defined by

H : VΓ,h → Vh :
find HvB ∈ Vh :

a(HvB, v(k)) = 0 ∀v(k) ∈ V (k)
I,h , 1 ≤ k ≤ N,

HvB = vB on Γ,

(3.3)

see [19] and [196] for a more extensive discussion.

Introducing the bilinear form

s : VΓ,h × VΓ,h → R, s(w, v) = a(Hw,Hv),

one can show that the interface component uB of the solution u to the IgA scheme
(2.13) satisfies the variational identity

s(uB, vB) = 〈g, vB〉 ∀vB ∈ VΓ,h, (3.4)

where g ∈ V ∗Γ,h is a suitable functional. By choosing the B-Spline basis for VΓ,h, the
variational identity (3.4) is equivalent to the linear system

SuB = g.
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The matrix S is the Schur complement of K with respect to the interface dofs. If we
reorder the entries of the stiffness matrix K and the load vector f such that the dofs
corresponding to the interface are arranged at first, i.e.,

K =

[
KBB KBI

KIB KII

]
and f =

[
fB
f I

]
,

then S and g can be represented in the form

S = KBB −KBI(KII)
−1KIB, g = fB −KBI(KII)

−1f I .

Once uB is calculated, we obtain uI as the solution of the system

KIIuI = f I −KBIuB.

Instead of the Schur complement matrix S we will mostly use its operator represen-
tation:

S : VΓ,h → V ∗Γ,h, 〈Sv, w〉 = (Sv,w)`2 .

3.1.2 Local Spaces and Jump Operator

We define the local interface space W (k) as the restriction of VΓ,h to Ω(k), i.e.,

W (k) := span{N i,p| supp {N i,p} ∩ Γ(k) 6= ∅, i ∈ I}.

Furthermore, we define the space of functions, which are locally in W (k), by

W :=
N∏
k=1

W (k).

We note that functions fromW are, in general, not continuous across the interface, i.e.
W * C0. A function w ∈ W has components w :=

[
w(k)

]N
k=1
↔
[
w(k)

]N
k=1

=: w.

Later on, we will use constraints, which enforce the continuity across the interface.
Let B(k, l) be the set of all coupled B-Spline basis functions between Ω(k) and Ω(l),
then this constraints are given by

w
(k)
i −w

(l)
j = 0 ∀(i, j) ∈ B(k, l), k > l. (3.5)

The operator B : W → U∗ := RΛ, which realizes the constraints (3.5) in the form
Bw = 0, is called jump operator. Note, the definition of B(k, l) leads to so-called fully
redundant constraints, which implies that, in general, B does not have full rank. The
space of all functions in W which belong to the kernel of B is denoted by Ŵ , and can
be identified with VΓ,h, i.e.

Ŵ = {w ∈ W |Bw = 0} ≡ VΓ,h.

An illustration of the constraints introduced in (3.5) can be found in Figure 3.1.
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Figure 3.1: Left picture illustrates the fully redundant constraints introduced in (3.5).
Right picture presents an illustration of the intermediate space W̃ in the case of con-
tinuity of vertex values (ALG. A).

Remark 3.1. In [137] a more general form of the jump operator is considered. It
enforces constrains of the form

w
(k)
i −

ni∑
r=1

z
(k,l)
i,jr
w

(l)
j = 0, ∀(i, j1, . . . , jni) ∈ B̃(k, l),

which also allow non-matching but nested meshes. The set B̃(k, l) contains tuples of
coupled indices between Ω(k) and Ω(l). This situation occurs, if the mesh on one side
of the interface is a refinement of the mesh on the other side.

Remark 3.2. In Chapter 4, we investigate a dG approach to handle non-matching
meshes, which are not required to be nested.

Remark 3.3. A different approach of incorporating non-matching meshes would be to
use mortar methods, see, e.g, [87], [56] and [228]. Instead of enforcing the continuity
at the interface in a strong way, it is enforced via a variational equation. Therefore,
the jump operator is defined as

〈Bw, µ〉 =

∫
Γ

JwKµds,

where JwK denotes the jump of w across Γ.
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3.1.3 Saddle-Point Formulation

Due to the multi-patch structure of our physical domain, we can decompose the bilinear
form and the right-hand side functional as follows

a(u, v) =
N∑
k=1

a(k)(u(k), v(k)), 〈F, v〉 =
N∑
k=1

〈F (k), v(k)〉,

where u, v ∈ Vh. By means of the B-Spline basis we can rewrite the variational problem
as linear system (

N∑
k=1

AΩ(k)K(k)AT
Ω(k)

)
u =

N∑
k=1

AΩ(k)f (k), (3.6)

where AT
Ω(k) is the Boolean patch-assembling matrix. Analogously to Section 3.1.1,

we can reorder the entries of the patch-local stiffness matrix and right-hand side as
follows

K(k) =

[
K

(k)
BB K

(k)
BI

K
(k)
IB K

(k)
II

]
, f (k) =

[
f

(k)
B

f
(k)
I

]
.

Eliminating the local interface dofs, we obtain that (3.6) can be reformulated as(
N∑
k=1

AΓ(k)S(k)AT
Γ(k)

)
uB =

N∑
k=1

AΓ(k)g(k), (3.7)

where S(k) = K
(k)
BB − K

(k)
BI(K

(k)
II )−1K

(k)
IB , g

(k) = f
(k)
B − K

(k)
BI(K

(k)
II )−1f

(k)
I and the

Boolean matrix AΓ(k) is the corresponding assembling matrix for the interfaces. Sim-
ilarly, we can express (3.7) in operator notation as

N∑
k=1

〈S(k)u
(k)
B , v

(k)
B 〉 =

N∑
k=1

〈g(k), v
(k)
B 〉 ∀vB ∈ VΓ,h, (3.8)

where uB ∈ VΓ,h, g
(k) ∈ W (k)∗ and S(k) : W (k) → W (k)∗.

In the following, we introduce the Schur complement on the space W and the corre-
sponding right hand side and denote them again by S and g, respectively. Note, in
Section 3.1.1 we defined S and g as S : VΓ,h → V ∗Γ,h and g ∈ V ∗Γ,h. The more appropriate
symbol for them would have been Ŝ and ĝ, since they can be interpreted as defined
on Ŵ ≡ VΓ,h. The same applies for their matrix representations S and g. For the
purpose of simpler notation in the current introduction of the IETI-DP algorithm, we
accept this slight abuse of notation. In Chapter 4, the introduced notation for the dG
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version will be more technical and we will be more strict regarding this.

S : W → W ∗, 〈Sv, w〉 :=
N∑
k=1

〈S(k)v(k), w(k)〉 for v, w ∈ W,

g ∈ W ∗, 〈g, w〉 :=
N∑
k=1

〈g(k), w(k)〉 for w ∈ W.

Expressed in matrix form, we can write S and g as

S := diag(S(k))Nk=1, g := [g(k)]Nk=1.

The next step is to reformulate (3.8) in terms of S and B in the space W . Due to the
symmetry of a(·, ·), we can write (3.8) as minimization problem

uB = argmin
v∈VΓ,h

N∑
k=1

(
1

2
〈S(k)v(k), v(k)〉 − 〈g(k), v(k)〉

)
,

which can be reformulated as a constraint minimization problem in W

uB = argmin
w∈W,Bw=0

1

2
〈Sw,w〉 − 〈g, w〉. (3.9)

In the following we will only work with the Schur complement system. Hence, to
simplify the notation, we will use u instead of uB. If a distinction between u, uB and
uI is necessary, we will write the subscript.

Problem (3.9) can be rewritten as the following saddle-point problem: find (u, λ) ∈
W × U such that [

S BT

B 0

] [
u
λ

]
=

[
g
0

]
, (3.10)

where U := R|Λ| and |Λ| are the number of Lagrange multipliers, i.e., the number of
rows of B. We immediately observe the following result, cf. Lemma 2.11 in [183].

Lemma 3.4. If ker(S)∩ ker(B) = {0}, then the above problem is uniquely solvable up
to adding elements from ker(BT ) to λ.

Remark 3.5. We note that not all S(k) are regular, since those which do not lie
on a Dirichlet boundary correspond to pure Neumann problems. The usual strategy
for solving (3.10) is to work with its Schur complement, but since some blocks of
S are singular, the Schur complement is not well defined. Considering the classical
FETI method, one adds the basis of each local kernel to the space and regularizes the
matrix. Unfortunately, to do this one needs exact knowledge of the kernels, which is in
general not trivial. The dual-primal approach presented below circumvents this issue
by restricting the space W to ensure that S is invertible.
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3.1.4 Intermediate Space and Primal Constraints

In order to guarantee the positive definiteness of S, we are looking for an intermediate
space W̃ in the sense Ŵ ⊂ W̃ ⊂ W such that S restricted to W̃ is SPD. Let Ψ ⊂ V ∗Γ,h
be a set of linearly independent functionals, called primal variables. Then we define
the spaces

W̃ := {w ∈ W : ∀ψ ∈ Ψ : ψ(w(k)) = ψ(w(l)), k, l ∈ {1, . . . , N} with k > l},

W∆ :=
N∏
k=1

W
(k)
∆ , where W (k)

∆ := {w(k) ∈ W (k) : ∀ψ ∈ Ψ : ψ(w(k)) = 0}.

Moreover, we introduce the space WΠ ⊂ Ŵ , such that

W̃ = WΠ ⊕W∆.

We call WΠ primal space and W∆ dual space. If we choose Ψ, such that W̃ ∩ ker(S) =
{0}, then

S̃ : W̃ → W̃ ∗, 〈S̃v, w〉 = 〈Sv, w〉 ∀v, w ∈ W̃

is invertible. In the following, we will always assume that such a Ψ is chosen.

In the literature, there are the following typical choices for the primal variables ψ:

• Vertex evaluation: ψV(v) = v(V),

• Edge averages: ψE(v) = 1
|E|

∫
E v ds,

• Face averages: ψF(v) = 1
|F|

∫
F v ds.

The typical choices for Ψ are usually called Algorithm A – C:

• Algorithm A: Ψ = {ψV},

• Algorithm B: Ψ = {ψV} ∪ {ψE} ∪ {ψF},

• Algorithm C: Ψ = {ψV} ∪ {ψE}.

Moreover, in literature one finds references to two further choices for Ψ, commonly
referred to as Algorithm D and E, which are aiming for a reduced set of primal vari-
ables, see, e.g., Algorithm 6.28 and 6.29 in [215]. These algorithms address the issue of
the rapidly increasing number of primal variables. The space W̃ for the case of having
continuity of the vertex values is illustrated in Figure 3.1.

Remark 3.6. For domains Ω ⊂ R2, Algorithm A will provide a quasi optimal method
for the Poisson problem. By choosing additional primal variables, the coarse problem
will grow. Hence, it becomes computationally more demanding, but will reduce the
condition number. For three-dimensional domains, it can be shown that just choos-
ing vertex evaluation does not lead to a quasi optimal method. One obtains a bound
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O(H/h(1 + log(H/h))2), see Remark 6.39 in [215], which is also observed in the nu-
merical examples, see Section 3.4. In such cases, additional primal variables have to
be chosen.

3.1.5 IETI - DP

Since W̃ ⊂ W , there is a natural embedding Ĩ : W̃ → W . We define the jump
operator restricted to W̃ as B̃ := BĨ : W̃ → U∗. Then we can formulate the saddle-
point problem in W̃ as follows: find (u, λ) ∈ W̃ × U :[

S̃ B̃T

B̃ 0

] [
u
λ

]
=

[
g̃
0

]
, (3.11)

where g̃ := ĨTg, and B̃T = ĨTBT . Here, ĨT : W ∗ → W̃ ∗ denotes the adjoint of Ĩ.

By construction, S̃ is SPD on W̃ . Hence, we can define the Schur complement F and
the corresponding right-hand side d of equation (3.11) as follows:

F := B̃S̃
−1
B̃T , d := B̃S̃

−1
g̃.

Finally, we can formulate the following problem for the Lagrange multipliers

find λ ∈ U : Fλ = d. (3.12)

By means of Brezzi’s theorem, we obtain the following result, cf. Lemma 5.9 in
[183].

Lemma 3.7. The above problem is uniquely solvable up to adding elements from
ker(B̃T ) to λ. The unique solution

u = S̃
−1

(g̃ − B̃Tλ)

satisfies u ∈ Ŵ ≡ VΓ,h and is the solution of (3.4).

We note that F is symmetric and positive semi-definite on U . According to [183], if
we set

Ũ := U/ker(B̃T ), Ũ∗ := R(B̃),

where Ũ∗ is in fact the dual of Ũ , then F restricted to Ũ is SPD, i.e. F|Ũ : Ũ → Ũ∗.
Hence, it is possible to solve (3.12) with the PCG method.
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3.1.6 Preconditioning

Since the condition number of F is not optimal with respect to h and H, there is need
for preconditioning. The classical choice is the so-called scaled Dirichlet preconditioner.
It is known for FE that one obtains a quasi-optimal condition number bound of the
preconditioned system in terms of the ratio of subdomain diameter over mesh-size,
i.e., H/h. Moreover, the condition number is robust with respect to jumping diffusion
coefficients. The scaled Dirichlet preconditioner has the following form

M−1
sD := BDSB

T
D, (3.13)

where BD is a scaled version of B, which enforces the constraints:

δ†j
(l)
w

(k)
i − δ

†
i

(k)
w

(l)
j = 0 ∀(i, j) ∈ B(k, l), k > l,

with δ†i
(k)

=
ρ

(k)
i∑
l ρ

(l)
jl

,

where jl is the corresponding coefficient index on the neighbouring patch Ω(l). We note
that this preconditioner just uses the block diagonal version of the Schur complement.
Therefore, the application can be performed in parallel. Moreover, it can be shown
that the scaled Dirichlet preconditioner is SPD on Ũ∗, provided that Ψ are chosen as
in Section 3.1.4, see Lemma 5.14 in [183]. This justifies the use as a preconditioner in
the PCG algorithm.

Typical choices for ρ(k)
i are

• Multiplicity Scaling: ρ(k)
i = 1,

• Coefficient Scaling: If α(x)|Ω(k) = α(k), choose ρ(k)
i = α(k),

• Stiffness Scaling: ρ(k)
i = K

(k)
i,i .

Remark 3.8. According to [19], we use a modified version of the stiffness scaling for
the analysis. In this modified version, we make the choice ρ(k)

i = K(k)
r,r , where K

(k)
r,r

is one representative of the values {K(k)
i,i }i∈IB . Often these values are very similar

on one patch, which is due to the tensor-product structure of B-Splines and the con-
stant material value on a patch. Numerical experiments show only minor differences
between the original stiffness scaling as introduced above and the modified one. In the
numerical experiments in Section 3.4, the original stiffness scaling is used, whereas for
the condition number estimate in Section 3.3, we consider the modified one.

If the diffusion coefficient α is constant and identical on each patch, then the multi-
plicity and the coefficient scaling are the identical. If the diffusion coefficient has a
jump at the patch interface, the coefficient scaling is preferable.



38 CHAPTER 3. CONTINUOUS GALERKIN IETI-DP METHODS

Remark 3.9. An alternative and under certain circumstances more efficient version
is the so-called lumped Dirichlet preconditioner, see Section 2.2.4.3 in [183] and [64]
for the classical FETI method. Instead of applying the Schur complement S, one just
uses KBB. The preconditioner is then given by M−1

sD = BDKBBB
T
D, This circumvents

the need for solving a system with KII , but leads to an increased condition number.

Theorem 3.10. Let Hk be the diameter, hk the local mesh-size of Ω(k), and M−1
sD the

scaled Dirichlet preconditioner as defined in (3.13). Then, under Assumption 2, we
have

κ(M−1
sDFŨ) ≤ C max

k

(
1 + log

(
Hk

hk

))2

,

where the positive constant C is independent of h and H.

The proof will be given in Section 3.3. In the case of IgA, a more general proof in the
sense that not only C0 smoothness across patch interfaces is allowed but also C l, l ≥ 0,
smoothness, can be found in [19]. However, the proof is restricted to the case of a
domain decomposition that is obtained by subdividing a single patch, i.e., performing a
decomposition of the parameter domain. Hence, always the same geometrical mapping
G is used. Furthermore, due to the C l, l ≥ 0, smoothness across interfaces, only a
condition number bound of O ((1 + logH/h)H/h) could be proven for stiffness scaling.
In Section 3.3, we will extend the proof given in [19] to multi-patch domains, which
consists of different geometrical mappings G(k) for each patch. Additionally, for l = 0,
we also obtain quasi-optimal condition number bounds for the stiffness scaling.

Remark 3.11. The condition number bound given in Theorem 3.10 does not cover the
dependence on the B-Spline degree p. However, the numerical experiments performed
in Section 3.4.4 indicate that the condition number of the preconditioned IETI-DP
operator depends only logarithmically or at most linearly on p. For spectral finite
elements a logarithmic dependence of the condition number on the degree is known,
see the discussion in [181], [132] and [125] and references therein.

3.1.7 BDDC - Preconditioner

The balancing domain decomposition by constraints (BDDC) preconditioner is closely
related to the IETI-DP method, see, e.g., [42]. It was shown in [159] that the spectra
of the two operators are identical up to zeros and ones. For completeness we give in
this section a short overview of the construction of the BDDC preconditioner, where
we follow the lines in [183]. We start from the equation

Ŝû = ĝ, (3.14)

where the notation ·̂ indicates that the operator and the functions are restricted to the
continuous space VΓ,h, i.e., (3.14) is the standard Schur complement system. Since Ŝ is
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SPD, we can solve system (3.14) by the PCG method preconditioned by a symmetric
positive definite preconditioner, which will be the BDDC preconditionerM−1

BDDC .

As in the previous sections, we use the same set of linearly independent primal vari-
ables Ψ and the corresponding spaces. We then define the BDDC preconditioner as
follows

M−1
BDDC := ẼDS̃

−1
ẼT
D,

where ẼT
D is defined via the formulas

ẼD = EDĨ : W̃ → Ŵ ,

ED = I − PD : W → Ŵ ,

PD = BT
DB : W → W.

For more details we refer the reader to [183] and references therein. One can give an
alternative formulation see, e.g., [19]. Here we assume that, after a change of basis,
each primal variable corresponds to one degree of freedom, see, e.g., [135]. Let K(k)

be the stiffness matrix corresponding to Ω(k). We split the degrees of freedom into
interior (I) and interface (B) ones. Furthermore, we again split the interface degrees
of freedoms into primal (Π) and dual (∆) ones. This provides a partition of K(k) into
2× 2 and 3× 3 block systems:

K(k) =

[
K

(k)
II K

(k)
IB

K
(k)
BI K

(k)
BB

]
=

K
(k)
II K

(k)
I∆ K

(k)
IΠ

K
(k)
∆I K

(k)
∆∆ K

(k)
∆Π

K
(k)
ΠI K

(k)
Π∆ K

(k)
ΠΠ

 .
In order to the define the preconditioner, we need the following restriction and inter-
polation operators:

RB∆ : W̃ → W∆, R
(k)
∆ : W∆ → W

(k)
∆ ,

RBΠ : W̃ → WΠ, R
(k)
Π : WΠ → W

(k)
Π .

(3.15)

We define a scaled version R(k)
D,∆ of R(k)

∆ by multiplying its i-th row by δ†i
(k)

, and then
we define

RD,B := RBΠ ⊕

(
N∑
k=1

R
(k)
D,∆

)
RB∆. (3.16)

The BDDC preconditioner is determined by

M−1
BDDC := RT

D,BS̃
−1
RD,B,
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where

S̃
−1

= RT
B∆

 N∑
k=1

[
0 R

(k)
∆

T
] [K(k)

II K
(k)
I∆

K
(k)
∆I K

(k)
∆∆

]−1 [
0

R
(k)
∆

]RB∆ + ΦS−1
ΠΠΦT .

Here the matrices SΠΠ and Φ are given by

SΠΠ =
N∑
k=1

R
(k)
Π

T

K(k)
ΠΠ −

[
K

(k)
ΠI K

(k)
Π∆

] [K(k)
II K

(k)
I∆

K
(k)
∆I K

(k)
∆∆

]−1 [
K

(k)
IΠ

K
(k)
∆Π

]R
(k)
Π

and

Φ = RT
BΠ −RT

B∆

N∑
k=1

[0 R
(k)
∆

T
] [K(k)

II K
(k)
I∆

K
(k)
∆I K

(k)
∆∆

]−1 [
K

(k)
IΠ

K
(k)
∆Π

]R
(k)
Π ,

respectively.

3.2 Implementation of the IETI-DP method

For the presentation of the implementation, we follow the approach presented in Sec-
tion 5.3 in [183]. Since F is symmetric and at least positive semi-definite and positive
definite on Ũ , we can solve the linear system Fλ = d of the algebraic equations by
means of the PCG algorithm, where we use M−1

sD as preconditioner. For completeness,
the PCG method is summarized in Algorithm 1.

Algorithm 1 PCG method with initial guess λ0,
λ0 given
r0 = d− Fλ0, k = 0, β−1 = 0
repeat

sk = M−1
sD rk

βk−1 = (rk,sk)
(rk−1,sk−1)

pk = sk + βk−1pk−1

αk = (rk,sk)
(Fpk,pk)

λk+1 = rk + αkpk
rk+1 = rk − αkFpk
k = k + 1

until stopping criterion fulfilled

It is very expensive to build up the matrix representation of F and M−1
sD . Fortunately,

the PCG algorithm only requires the application of the matrix to a vector. Hence, we
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want to present a way to efficiently apply F andM−1
sD without calculating their matrix

form. The challenging part is the application of S̃−1, which is part of F . The idea is
to split W̃ into WΠ ⊕W∆, such that WΠ ⊥S W∆. For a more detailed discussion, we
refer the reader to Section 5.3 in [183].

3.2.1 Choosing a Basis for WΠ

The first step is to provide an appropriate spaceWΠ and its basis {φ̃j}nΠ
j=1, where nΠ is

the dimension of WΠ, i.e., the number of primal variables. We require that this basis
is nodal with respect to the primal variables, i.e.,

ψi(φ̃j) = δi,j, ∀i, j ∈ {1, . . . , nΠ}.

Additionally, we require that

φ̃j|Ω(k) = 0 if ψj is not associated to Ω(k),

i.e., the basis has a local support in a certain sense.

There are many choices for the subspace WΠ. Following the approach presented in
[183], we will choose that one which is orthogonal to W∆ with respect to S, i.e.,

〈SwΠ, w∆〉 = 0, ∀wΠ ∈ WΠ, w∆ ∈ W∆.

This choice, which will simplify the application of S̃
−1

significantly, is known as energy
minimizing primal subspace in the literature, cf. [183] and [42]. In order to find such
a basis, we define the constraint matrix C(k) : W (k) → Rn

(k)
Π for each patch Ω(k) which

realizes the action of the primal variables:

[C(k)v]j = ψi(k,j)(v) ∀v ∈ W ∀j ∈ {1, . . . , n(k)
Π },

where n(k)
Π are the number of primal variables associated with Ω(k) and i(k, j) the

global index of the j-th primal variable on Ω(k). Note that a function w(k)
∆ ∈ W (k)

∆ is
in the kernel of C(k), i.e., C(k)w

(k)
∆ = 0.

For each patch Ω(k), the basis functions {φ̃(k)
j }

n
(k)
Π
j=1 ofW (k)

Π are then given by the solution
of the system [

S(k) C(k)T

C(k) 0

] [
φ̃

(k)
j

µ̃
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }, (3.17)

where e(k)
j ∈ Rn

(k)
Π is the j-th unit vector. The Lagrange multipliers µ̃(k)

j ∈ Rn
(k)
Π will

become important later on. By means of ker(S)∩ W̃ = {0}, it is easy to see that this
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system has a unique solution. Due to the fact that building the Schur complement
S(k) is not efficient, we use an equivalent formulation by means of K(k):K(k)

BB K
(k)
BI C(k)T

K
(k)
IB K

(k)
II 0

C(k) 0 0


φ̃(k)

j

·
µ̃

(k)
j

 =

 0
0

e
(k)
j

 . (3.18)

For each patch Ω(k), the sparse LU factorization of this matrix is computed and
stored.

Remark 3.12. A different approach would be to construct a basis for this space by
means of a basis transformation, such that to each primal variable there is an associated
basis function. This approach has been studied, e.g., in [129] and [135].

3.2.2 Application of S̃
−1

Assume that f := {fΠ, {f
(k)
∆ }} ∈ W̃ ∗ is already given. We are now looking for w :=

{wΠ, {w(k)
∆ }} ∈ W̃ such that w = S̃

−1
f . Let SΠΠ, S∆Π, SΠ∆, S∆∆ be the restrictions of

S̃ to the corresponding subspaces, i.e.,

〈SΠΠvΠ, wΠ〉 = 〈S̃vΠ, wΠ〉 for vΠ, wΠ ∈ WΠ,

〈SΠ∆vΠ, wD〉 = 〈S̃vΠ, wD〉 for vΠ ∈ WΠ, wD ∈ W∆,

〈S∆∆vD, wD〉 = 〈S̃vD, wD〉 for vD, wD ∈ W∆,

and S∆Π = STΠ∆. We note that S∆∆ can be seen as a block diagonal operator, i.e.,
S∆∆ = diag(S

(k)
∆∆). Due to our special choice W̃Π := W̃⊥S

∆ , we have S∆Π = SΠ∆ = 0.
Based on this splitting, we obtain the block forms

S̃ =

[
SΠΠ 0

0 S∆∆

]
and S̃−1 =

[
S−1

ΠΠ 0
0 S−1

∆∆

]
.

Therefore, the application of S̃
−1

reduces to an application of one global coarse problem
involving S−1

ΠΠ and N local problems involving S(k)
∆∆

−1
, i.e.,

wΠ = S−1
ΠΠfΠ, and w

(k)
∆ = S

(k)
∆∆

−1
f

(k)
∆ ∀k = 1, . . . , N.

Application of S(k)
∆∆

−1
: The application of S(k)

∆∆

−1
corresponds to solving a local

Neumann problem in the spaceW∆, i.e., S(k)w(k) = f
(k)
∆ , with the constraint C(k)w(k) =

0. This problem can be rewritten as the following saddle-point problem[
S(k) C(k)T

C(k) 0

] [
w(k)

·

]
=

[
f

(k)
∆

0

]
.

The same method as used in (3.17) for rewriting that equation in terms of K applies
here, and the LU factorization of the matrix is already available.
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Application of SΠΠ
−1: The matrix SΠΠ can be assembled from the patch-local

matrices S(k)
ΠΠ. Let {φ̃(k)

j }
n

(k)
Π
j=1 be the basis of W (k)

Π . In order to assemble S(k)
ΠΠ, in

general, we have to compute its entries via

[S
(k)
ΠΠ]i,j = 〈S(k)φ̃

(k)
i , φ̃

(k)
j 〉, i, j ∈ {1, . . . , n(k)

Π }.

The construction of {φ̃(k)
j }

n
(k)
Π
j=1 in (3.18) provides

[S
(k)
ΠΠ]i,j = 〈S(k)φ̃

(k)
i , φ̃

(k)
j 〉 = −〈C(k)T µ̃

(k)
i , φ̃

(k)
j 〉 = −(µ̃

(k)
i , C(k)φ̃

(k)
j )`2

= −(µ̃
(k)
i , e

(k)
j )`2 = −[µ̃

(k)
i ]j.

Therefore, we can reuse the Lagrange multipliers µ̃(k)
i obtained in (3.18), and assemble

S
(k)
ΠΠ from them. Once SΠΠ is assembled, the sparse LU factorization can be calculated

and stored.

3.2.3 Application of Ĩ and ĨT

The last building block is the embedding Ĩ : W̃ → W and its adjoint ĨT : W ∗ → W̃ ∗.
Recall the direct splittingW (k) = W

(k)
∆ ⊕W

(k)
Π . Let us denote by Φ(k) = [φ̃

(k)
1 , . . . , φ̃

(k)

n
(k)
Π

]

the basis of W (k)
Π . Given the primal part wΠ, we obtain its restriction to Ω(k) via an

appropriately defined restriction matrix R(k). Following the lines in Section 5.3.3 of
[183], we can formulate the operator Ĩ : W̃ → W as[

wΠ

w∆

]
7→ w := ΦRwΠ + w∆,

where Φ and R are block versions of Φ(k) and R(k), respectively. The second function
is its adjoint operation ĨT : W ∗ → W̃ ∗. It can be realized in the following way

f 7→
[
fΠ

f∆

]
=

[
AΦTf

f − CTΦTf

]
,

where A is the corresponding assembling operator to R, i.e., A = RT . For a more
extensive discussion and derivation we refer the reader to [183].

3.2.4 Application of the Preconditioner

The application of the scaled Dirichlet preconditioner M−1
sD = BDSB

T
D is basically

given by the application of S where

S = diag(S(k)), with S(k) = K
(k)
BB −K

(k)
BI (K

(k)
II )−1K

(k)
IB .

The calculation of v(k) = S(k)w(k) consists of 2 steps:
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1. Solve: K(k)
II x

(k) = −K(k)
IBw

(k) (Dirichlet problem)

2. v(k) = K
(k)
BBw

(k) +K
(k)
BI x

(k)

Again, the LU factorization of K(k)
II can be computed in advance and stored.

3.2.5 Summary for the Application of F and M−1
sD

We now summarize the application of F and M−1
sD to vectors in Algorithm 2 and

Algorithm 3, respectively. In the previous sections, we have not specifically discussed
the application of B and BT . These matrices have entries −1, 0 and 1. In the case
of more general jump operators, as described in Remark 3.1 and Remark 3.3, they
can take different values. Usually, not the matrix is stored, but only a function that
performs the application is provided.

Algorithm 2 Algorithm for calculating ν = Fλ for given λ ∈ U
procedure F (λ)

Application of BT : {f (k)}Nk=1 = BTλ

Application of ĨT : {fΠ, {f
(k)
∆ }Nk=1} = ĨT

(
{f (k)}Nk=1

)
Application of S̃−1 :
Begin
wΠ = S−1

ΠΠfΠ

w
(k)
∆ = S

(k)
∆∆

−1
f

(k)
∆ ∀k = 1, . . . , N

End
Application of Ĩ : {w(k)}Nk=1 = Ĩ

(
{wΠ, {w(k)

∆ }Nk=1}
)

Application of B : ν = B
(
{w(k)}Nk=1

)
end procedure

Algorithm 3 Algorithm for calculating ν = M−1
sDλ for given λ ∈ U

procedure M−1
sD (λ)

Application of BT
D : {w(k)}Nk=1 = BT

Dλ
Application of Se :
Begin

Solve K(k)
II x

(k) = −K(k)
IBw

(k) ∀k = 1, . . . , N

v(k) = K
(k)
BBw

(k) +K
(k)
BI x

(k). ∀k = 1, . . . , N
End
Application of BD : ν = BD

(
{v(k)}Nk=1

)
end procedure
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3.3 Analyzing the Condition Number

In this section we rephrase the results and notations established in [19], and extend
them to multi-patch domains, consisting of a different geometrical mapping G(k) for
each patch. However, we only allow C0 smoothness across the patch interfaces, and
restrict our analysis to the 2d case of Algorithm A and having a globally constant
diffusion coefficient.

3.3.1 General Results

Let u be a function from Vh. Its restriction to a patch Ω(k) belongs to V (k)
h , and can

be written as

u(k) := u|Ω(k) =
∑
i∈I(k)

u
(k)
i N

(k)
i,p ,

where I(k) contains all indices corresponding to basis functions that have no support on
the Dirichlet boundary in the physical space Ω(k). The corresponding spline function
in the parameter space is denoted by û(k) ∈ S

(k)
h . It is important to note that the

geometrical map G(k) and its inverse G(k)−1 are independent of hk, since it is fixed on
a coarse discretization. When the basis becomes refined, G(k) stays the same. Clearly,
the same applies for the gradients.

We will now define a local discrete semi-norm based on the coefficients ui, where we
refer to [19] for a motivation and a more detailed discussion.

Definition 3.13. Let u ∈ V
(k)
h , and û be its counterpart in the parameter domain.

Then we define the discrete semi-norm

|û|2k,∇ :=
∑
i∈I(k)

1

|u(k)
(i1,i2) − u

(k)
(i1−1,i2)|

2 +
∑
i∈I(k)

2

|u(k)
(i1,i2) − u

(k)
(i1,i2−1)|

2,

where for i ∈ I(k)
1 , I(k)

2 ⊂ I(k) are defined such that u(k)
(i1−1,i2) and u(k)

(i1,i2−1) are well
defined, respectively.

Proposition 3.14. Let u ∈ V (k)
h and û its counterpart in the parameter domain. Then

|û|2∇ ≈ |û|
2
H1((0,1)2) ≈ |u|

2
H1(Ω(k))

holds, where the hidden constants are independent of hk and Hk.

Proof. The proof follows from the equivalence of the norms in the parameter and
physical domain, see Corollary 2.12, Assumption 3 and Proposition 5.2 in [19]
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The second step is to provide properties in the local index spaces. Since we consider
only the two-dimensional problem, we can interpret the coefficients (ui)i∈I(k) as entries
of a matrix C(k) = (ui)i∈I(k) ∈ R(k) := RM

(k)
1 ×M(k)

2 , where M (k)
ι are the number of

basis functions on Ω(k) along dimension ι. When applying the semi-norm | · |∇ to the
coefficient matrix C(k), we mean the application to the corresponding spline function
û.

The entries of the matrix C(k) can be interpreted as values on a uniform grid T (k).
This motivates the definition of an operator (·)I : C([0, 1]2) → R(k), which evaluates
a continuous function on the grid points (xi) = (xi1i2), and an operator χ(k) : R(k) →
Q1(T (k)) ⊂ H1([0, 1]2) that provides a piecewise bilinear interpolation of the given
grid values, where Q1(T (k)) is the space of piecewise bilinear functions on T (k).

Furthermore, given values on an edge e on [0, 1]2 along dimension ι, we need to define
its linear interpolation and a discrete harmonic extension to the interior. In order to
do so, let us denote by I(e) all indices of grid points xi associated to e. Additionally,
let P1(T (k)|e) be the space of piecewise linear spline functions on T (k)|e. We define
the interpolation of values on I(e) by the restriction of the operator χ(k) to e, denoted
by χ

(k)
e : RM

(k)
ι → H1(e) with an analogous definition. In a similar way, we define

the interpolation operator for the whole boundary ∂[0, 1]2, denoted by χ(k)
∂ : R|I(∂)| →

H1(∂[0, 1]2), where I(∂) := {i : xi ∈ ∂[0, 1]2}. This leads to a definition of a semi-norm
for grid points on an edge e via the interpolation to functions in P1(T |(k)

e ):

Definition 3.15. Let e be an edge of [0, 1]2 along dimension ι, and let v be a vector
in RM

(k)
ι . Then we define the semi-norm |||v|||e := |χ(k)

e (v)|H1/2(e) for all v ∈ RM
(k)
ι .

Remark 3.16. For the interpolation operator χ(k)
e defined on an edge e, it is easy to

see that χ(k)(C(k))|e = χ
(k)
e (C|(k)

e ) and

|||C|(k)
e |||e = |χ(k)

e (C|(k)
e )|H1/2(e) = |χ(k)(C(k))|e|H1/2(e)

hold.

Finally, we are able to define the discrete harmonic extension in R(k).

Definition 3.17. Let HQ1 be the standard discrete harmonic extension into the piece-
wise bilinear space Q1. This defines the lifting operator H : R|I(∂)| → R(k) by

b 7→H(b) := (HQ1 (χ∂(b)))I .

Theorem 3.18. Let e be a particular side on the boundary of [0, 1]2 and the constant
β ∈ R+ such that β−1M

(k)
2 ≤M

(k)
1 ≤ βM

(k)
2 . Then the following statements hold:

• For all b ∈ R2M
(k)
1 +2M

(k)
2 −4 that vanish on the four components corresponding to

the four corners, the estimate

|||H(b)|||2∇ ≤ c(1 + log2M
(k)
1 )

∑
e∈∂[0,1]2

|||b|e|||2e,
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holds, where the constant c depends only on β.

• The estimate |C|∇ ≥ c|||C|e|||e is valid for all C ∈ RM
(k)
1 ×M(k)

2 , where the constant
c depends only on β.

Proof. See [19].

3.3.2 Condition Number Estimate

The goal of this section is to establish a condition number bound for P = M−1
BDDCŜ.

Following [19], we assume that the mesh is quasi-uniform on each subdomain and
the diffusion coefficient is globally constant. We focus now on a single patch Ω(k),
k ∈ {1, . . . , N}. For notational simplicity, we assume that the considered patch Ω(k)

does not touch the boundary ∂Ω.

We define the four edges of the parameter domain [0, 1]2 by Êr, and their images by
E

(k)
r = G(k)(Êr), r = 1, 2, 3, 4. Moreover, we denote by I(E

(k)
r ) the coefficient indices

corresponding to the basis functions on E(k)
r and by I(Γ(k)) the indices corresponding

to the whole boundary. Let u(k) ∈ V
(k)
h , then u(k) is determined by its coefficients

(ui)i∈I(k) , which can be interpreted as a M (k)
1 ×M (k)

2 matrix C. In a similar way, we
can identify functions on the trace space W (k).

Finally, let W (k)
∆ ⊂ W (k) be the space of spline functions which vanish on the pri-

mal variables, i.e., in the corner points. The following theorem provides an abstract
estimate of the condition number using the multiplicity scaling:

Theorem 3.19. Let δ†(k) be chosen accordingly to the multiplicity scaling strategy.
Assume that there exist two positive constants c∗, c∗, and a boundary semi-norm |·|W (k)

on W (k), k = 1, . . . , N , such that

|w(k)|2W (k) ≤ c∗s(k)(w(k), w(k)) ∀w(k) ∈ W (k), (3.19)

|w(k)|2W (k) ≥ c∗s
(k)(w(k), w(k)) ∀w(k) ∈ W (k)

∆ , (3.20)

|w(k)|2W (k) =
4∑
r=1

|w(k)|
E

(k)
r
|
W

(k)
r

∀w(k) ∈ W (k), (3.21)

where | · |
W

(k)
r

is a semi-norm associated to the edge spaces W (k)|
E

(k)
r
, with r = 1, 2, 3, 4.

Then the condition number of the preconditioned BDDC operator P satisfies the bound

κ(M−1
BDDCŜ) ≤ C(1 + c−1

∗ c
∗),

where the constant C is independent of h and H.

Proof. See [19] or [17].
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Using this abstract framework, we obtain the following condition number estimate for
the BDDC preconditioner.

Theorem 3.20. Let Ω ⊂ R2, and let W̃ be given as set of all functions from W , that
are continuous at the corners of Ω(k) for k = 1, . . . , N . Moreover, we assume that the
diffusion coefficient α is globally constant. Then there exists a boundary semi-norm
such that the constants c∗ and c∗ of Theorem3.19 are bounded by

c∗ ≤ C1 and c−1
∗ ≤ C2 max

1≤k≤N

(
1 + log2 (Hk/hk)

)
,

where the constants C1 and C2 are independent of Hk and hk. Therefore, the condition
number of the isogeometric preconditioned BDDC operator is bounded by

κ(M−1
BDDCŜ) ≤ C max

1≤k≤N

(
1 + log2 (Hk/hk)

)
,

where the constant C is independent of Hk and hk.

Proof. The proof essentially follows the lines of the proof given in [19] with a minor
modification due to the different geometrical mappings G(k). We note that we only
consider C0 continuity across the patch interfaces, which makes the proof less technical.

The first step is to appropriately define the semi-norm | · |2
W (k) in W (k):

|w(k)|2W (k) :=
4∑
r=1

(
|||w(k)|

E
(k)
r
|||
E

(k)
r

+ |w(k)|
E

(k)
r
|2k,∇
)
, (3.22)

where |||w(k)|
E

(k)
r
|||
E

(k)
r

:= |||v|||Êr , with v being the values (wi)i∈I(E
(k)
r )

written as a vector
and |w(k)|Êr |

2
k,∇ has to be understood as the restriction of the discrete semi-norm to

the edge Êr.

Let u(k) ∈ V (k)
h be the IgA harmonic extension of w(k), and û(k) its representation in

the parameter domain. Additionally, let e be any edge of the parameter domain of
Ω(k). Due to the fact that ui = wi for i ∈ I(Γ(k)), and denoting C(k) = (ui)i∈I(k) , we
obtain

|||w(k)|e|||2e = |||C(k)|e|||2e ≤ c|||C(k)|||2∇

by means of Theorem3.18. From the definition of |||C(k)|||2∇ and the definition of
|w(k)|

E
(k)
r
|2
W

(k)
r

, we get

|w(k)|e|2W (k)
r
≤ c|||C(k)|||2∇.

Furthermore, we have

|w(k)|e|2W (k)
r
≤ c|||C(k)|||2∇ ≤ c|û(k)|2∇ ≤ c|û(k)|2

H1(Ω̂)
≤ c|u(k)|2H1(Ω(k)).
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Since

|u(k)|2H1(Ω(k)) = |H(k)(w(k))|2H1(Ω(k)) = s(k)(w(k), w(k)),

we arrive at the estimate |w(k)|e|2
W

(k)
r

≤ c s(k)(w(k), w(k)). These estimates hold for all

edges of Ω(k). Hence, it follows that

|w(k)|2W (k) ≤ c∗s(k)(w(k), w(k)) for w ∈ W (k),

where the constant does not depend on hk and Hk. This proves the upper bound, i.e.,
estimate (3.19).

Let be w(k) ∈ W (k)
∆ , ŵ(k) its representation in the parameter domain, and (wi)i∈I(Γ(k))

its coefficient representation. We apply the lifting operator H(k) to (wi)i∈I(Γ(k)), and
obtain a matrix H(k)(ŵ(k)) with entries (wH

i
(k)

)i∈I(k) . These entries define a spline
function û(k) :=

∑
i∈I(k) wH

i
(k)
N̂

(k)
i,p . The following estimate

|||H(k)(ŵ(k))|||2∇ = |û(k)|2∇ ≥ c|û(k)|2
H1(Ω̂)

≥ c|u(k)|2H1(Ω(k)) ≥ c|H(w(k))|2H1(Ω(k)),

holds, where the last inequality is valid due to the fact that the discrete IgA harmonic
extension minimizes the energy among functions with given boundary data w. The
constant c does not depend on hk or Hk.

Recalling the definition of |w(k)|2
W (k) and using Theorem3.18, we arrive at the estimates

|||H(k)(ŵ(k))|||2∇ ≤ c(1 + log2M (k))
∑

e∈∂[0,1]2

|||ŵ|(k)
e |||2e ≤ c(1 + log2M (k))|w(k)|2W (k) .

Due to the mesh regularity, we have M (k) ≈ Hk/hk, and, hence, we obtain

s(k)(w(k), w(k)) = |H(u(k))|2H1(Ω(k)) ≤ c(1 + log2(Hk/hk))|w(k)|2W (k) .

which provides the desired estimate for c−1
∗ by taking the maximum over all patches.

The next theorem provides the corresponding estimates for the modified stiffness scal-
ing, see Remark 3.8.

Theorem 3.21. Let the counting functions be chosen according to the stiffness scaling
strategy. Assume that there exist two positive constants c∗, c∗, and a boundary semi-
norm | · |W (k) on W (k), k = 1, . . . , N , such that the three conditions of Theorem3.19
hold. Moreover, we assume that it exits a constant c∗STIFF such that

|w(k)|W (k) ≤ c∗STIFF s(δw
(k), δw(k)) ∀w(k) ∈ W (k)

∆ , (3.23)

where the coefficients of δw(k) are given by w(k)
i δ

(k)
i . Then the condition number of the

preconditioned BDDC operator M−1
BDDCŜ satisfies the bound

κ(M−1
BDDCŜ) ≤ c(1 + c−1

∗ c
∗ + c−1

∗ c
∗
STIFF )

for some constant c which is independent of hk and Hk.



50 CHAPTER 3. CONTINUOUS GALERKIN IETI-DP METHODS

Proof. See [19].

Lemma 3.22. The bound (3.23) holds with c∗STIFF ≤ C1, where C1 is the constant
appearing in Theorem 3.20. Hence, the condition number of the BDDC preconditioned
system in the case of stiffness scaling is bounded by

κ(M−1
BDDCŜ) ≤ C max

1≤k≤N

(
1 + log2 (Hk/hk)

)
,

where the constant C is independent of Hk and hk.

Proof. The inequality |w(k)|2
W (k) ≤ c∗STIFF s(δw

(k), δw(k)) is equivalent to

|δ†w(k)|2W (k) ≤ c∗STIFF s(w
(k), w(k)) for w ∈ W (k)

∆ .

We have already proven that

|w(k)|2W (k) ≤ c∗s(w(k), w(k)) for w ∈ W (k)
∆ ⊂ W (k).

Hence, it is enough to show the inequality

|δ†w(k)|2W (k) ≤ ch,H |w(k)|2W (k) for w ∈ W (k)
∆ ,

where the constant ch,H may depend on h(k) and H(k). Recalling the definition of
|δ†w(k)|2

W (k) as the sum of |δ†w(k)|2
E

(k)
r

|
W

(k)
r

, r = 1, 2, 3, 4, see (3.22), we have to estimate

only its parts, e.g., |w(k)|
E

(k)
1
|
W

(k)
1

. The other three terms follow analogously. From the

fact that δ†(k)
i ≤ 1 and δ†(k)

i = δ
†(k)
i+1 for all k ∈ {1, . . . , N} and i ∈ I(E

(k)
1 ), it follows

that

|||δ†w(k)|
E

(k)
1
|||
E

(k)
1

= δ†|||w(k)|
E

(k)
1
|||
E

(k)
1
≤ |||w(k)|

E
(k)
1
|||
E

(k)
1

and

M2
(k)−1∑
i2=1

|δ†(1,i2+1)w(1,i2+1) − δ†(1,i2)w(1,i2)|2 =

M2
(k)−1∑
i2=1

δ†i |w(1,i2+1) −w(1,i2)|2

≤
M

(k)
2 −1∑
i2=1

|w(1,i2+1) −w(1,i2)|2.

These estimates provide the inequalities |δ†w(k)|
E

(k)
1
|
W

(k)
1
≤ |w(k)|

E
(k)
1
|
W

(k)
1
, and, finally,

|δ†w(k)|W (k) ≤ |w(k)|W (k) .

This concludes the proof with c∗STIFF ≤ c∗, and the desired condition number bound.
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Figure 3.2: The domain Ω in 2d (left) and 3d (middle), and the coefficient pattern
(right).

3.4 Numerical Examples

In this section, we test the implemented IETI-DP algorithm for solving large scale
systems arising from the IgA discretization of (2.2) on the so-called YETI-footprint
domains illustrated in Figure 3.2. The computational domain consists of 21 subdo-
mains in both 2d and 3d. In both cases, one side of a patch boundary has inho-
mogeneous Dirichlet conditions, whereas all other sides have homogeneous Neumann
conditions. Each subdomain has a diameter of H and an associated mesh-size of h.
The degree of the B-Splines is chosen as p = 2 and p = 4 with maximal smoothness.
For the three-dimensional tests, we perform one additional refinement in z-direction.
The linear system (3.12), is solved by a PCG algorithm with the scaled Dirichlet pre-
conditioner (3.13). We use zero initial guess, and a reduction of the initial residual
by a factor of 10−8 as stopping criterion. The numerical examples illustrate the de-
pendence of the condition number of the IETI-DP preconditioned system on jumps
in the diffusion coefficient α, patch size H, mesh-size h and the degree p. We use the
C++ library G+Smo, see [162] and [111], for describing the geometry and perform-
ing the numerical tests. For performance studies in terms of computation time we
refer to the Section 4.3.6. There, the cG and dG version of the IETI-DP method is
compared.

3.4.1 Homogeneous Diffusion Coefficients

We present numerical tests for problem (2.2) with a globally constant diffusion coef-
ficient α = 1. The 2d results are summarized in Table 3.1, whereas the 3d results
are presented in Table 3.2. The results confirm that the preconditioned systems using
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ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
800 8 6.6 15 6.5 15 1.6 8 1.6 7
2364 16 8.8 17 8.7 16 1.7 9 1.7 9
7892 32 11.5 19 11.5 20 2.0 10 2.0 10
28548 64 14.6 21 14.6 21 2.3 11 2.3 11
108260 128 18.2 23 18.2 23 2.7 12 2.6 12

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
1418 8 8.8 17 8.7 18 1.8 9 1.7 10
3350 16 11.4 20 11.2 20 2.0 10 1.9 11
9614 32 15.5 21 14.3 21 2.4 12 2.3 12
31742 64 18.0 23 17.9 22 2.8 13 2.8 13
114398 128 22.1 25 22.0 24 3.3 14 3.3 14

Table 3.1: 2d example with homogeneous diffusion coefficient and p = 2 and p = 4.
Choice of primal variables: vertex evaluation (Alg. A), vertex evaluation and edge
averages (Alg. C).

coefficient scaling as well as stiffness scaling provide a quasi optimal condition number
bound according to Theorem 3.20 and Theorem 3.21.

3.4.2 Jumping Diffusion Coefficients

We investigate numerical examples with patch-wise constant diffusion coefficient α, the
jumping pattern of which is shown in Figure 3.2 (right). The diffusion coefficient has
values α(k) ∈ {blue, red} := {10−3, 103}. The 2d results are summarized in Table 3.3,
whereas the 3d results are shown in Table 3.4. We again observe a quasi optimal
condition number bound which is clearly independent of the diffusion coefficient and
its jumps across the subdomain interfaces.

3.4.3 Weak Scaling

The aim of this section is to investigate the weak scaling behaviour of the IETI-DP
method. Here we fix the ratio H/h, i.e. fixing the number of dofs on each patch,
and increasing the number of patches. In the following tests, we perform a uniform
splitting of the patches, i.e., by splitting them into 2d subpatches. This procedure is
performed via a knot insertion of p knots at the midpoints of each patch side, giving
C0 interfaces between the newly introduced patches. As in the previous examples,
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ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
1364 2 18.7 24 18.5 24 2.9 11 2.9 11
4984 4 46.9 27 46.7 27 3.5 13 3.4 13
24008 8 115.1 34 115.1 32 4.4 15 4.3 15
142792 16 273.3 43 277.3 43 5.6 17 5.5 17

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
4696 2 54.7 27 54.6 27 3.6 14 3.5 14
11620 4 125.3 33 124.8 33 4.4 15 4.3 15
40660 8 302.4 44 300.1 40 5.6 17 5.4 17
193108 16 710.8 57 710.2 51 7.0 20 6.8 19

Table 3.2: 3d example with homogeneous diffusion coefficient and p = 2 and p = 4.
Choice of primal variables: vertex evaluation (Alg. A), vertex evaluation, edge averages
and face averages (Alg. C).

ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
800 8 3.8 11 3.6 11 1.3 6 1.3 6
2364 16 5.0 12 4.8 12 1.6 6 1.6 6
7892 32 6.5 13 6.1 13 2.0 7 1.9 7
28548 64 8.1 13 7.5 13 2.4 8 2.2 8
108260 128 10.0 14 9.1 14 2.8 9 2.6 8

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
1418 8 5.6 13 5.3 13 1.8 7 1.7 7
3350 16 7.0 13 6.4 13 2.2 8 2.0 7
9614 32 8.7 13 7.8 13 2.6 8 2.3 8
31742 64 10.6 14 9.3 14 3.0 10 2.7 10
114398 128 12.7 14 11.0 14 3.5 9 3.1 9

Table 3.3: 2d example with jumping diffusion coefficient and p = 2 and p = 4. Choice
of primal variables: vertex evaluation (Alg. A), vertex evaluation and edge averages.
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ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
1364 2 12.1 14 12.0 13 2.0 9 2.0 9
4984 4 35.5 16 34.7 16 2.8 10 2.7 10
24008 8 95.3 20 92.2 18 3.7 11 3.6 11
142792 16 239.0 29 230.1 29 4.8 12 4.5 12

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
4696 2 41.5 18 40.1 16 3.1 10 3.0 10
11620 4 103.2 20 97.4 20 3.9 11 3.7 11
40660 8 264.4 27 244.0 25 5.1 12 4.7 12
193108 16 640.7 33 584.8 33 6.3 13 5.7 12

Table 3.4: 3d example with jumping diffusion coefficient and p = 2 and p = 4. Choice
of primal variables: vertex evaluation (Alg. A), vertex evaluation and edge averages
and face averages (Alg. B).

we choose the two- and three-dimensional YETI footprint as computational domain
and globally constant diffusion coefficient. On each patch we perform three initial
refinements, and use B-Spline degree 4 in the two-dimensional setting. For the three-
dimensional domain, we perform one initial refinement and use B-Spline of degree 3.
Due to the fact that the condition number depends only on the factor H/h for a fixed
degree, we expect constant condition numbers and number of iterations. The results
are summarized in Table 3.5 and show the expected behaviour. We only observe a slight
increase of the condition number for the two-dimensional domain using Algorithm A.
Moreover, in the three-dimensional example we observe that the method does not
scale well using Algorithm A, due to the sub-optimal bound H/h(1 + log(H/h))2 on
the condition number.

3.4.4 Dependence on the Degree p

We want to examine the dependence of the condition number on the B-Spline degree
p. When increasing the B-Spline degree, one can either increase the multiplicity of
the knots and keep the smoothness, or increase the smoothness, while keeping the
multiplicity. The computational domain Ω is chosen as the 2d and 3d YETI-footprint
presented in Figure 3.2. For the three-dimensional tests, we do not perform the addi-
tional refinement in z-direction. The diffusion coefficient α is chosen to be equal to 1.
The results are summarized in Table 3.6 and Table 3.7, where we observe a possibly
logarithmic dependence of the condition number on the polynomial degree p in case
of the coefficient scaling as well as of the stiffness scaling, see Figure 3.3.
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ALG. A ALG. C
2D coeff. scal stiff. scal coeff. scal stiff. scal

N Dofs nΠ κ It. κ It. nΠ κ It. κ It.
21 9614 34 14.5 25 14.4 25 58 2.3 14 2.3 15
84 38464 114 12.6 31 12.6 31 246 2.7 16 2.8 17
336 133386 400 11.5 34 11.5 34 1000 2.8 17 2.8 17
1344 533558 1476 11.3 35 11.3 35 4020 3.1 18 3.1 18
5376 2134254 5644 12.6 37 12.6 37 16108 3.5 18 3.5 18

3D coeff. scal stiff. scal coeff. scal stiff. scal
N Dofs nΠ κ It. κ It. nΠ κ It. κ It.
21 7846 150 85.7 37 84.9 36 140 4.0 18 3.9 17
168 62720 1038 102.3 78 102.5 80 1018 4.3 20 4.3 20
1344 451530 7026 101.1 97 101.4 97 6974 4.3 22 4.3 22
10752 3612342 49962 109.8 103 110.5 103 49860 4.6 22 4.6 22

Table 3.5: Weak scaling results for two- and three-dimensional computational domain
having a B-Spline degree of p = 4 and p = 3, respectively.

Increasing the multiplicity Increasing the smoothness
ALG. C coeff. scal stiff. scal. ALG. C coeff. scal stiff. scal.

#dofs degree κ It. κ It. #dofs degree κ It. κ It.
2364 2 1.7 11 1.7 10 2364 2 1.7 11 1.7 10
7892 3 1.9 13 1.9 12 2836 3 1.9 12 1.7 11
16620 4 2.1 14 2.1 14 3350 4 2.0 13 1.8 12
28548 5 2.4 15 2.3 15 3906 5 2.1 13 1.8 13
43676 6 2.6 16 2.5 16 4504 6 2.2 14 1.9 13
62004 7 2.8 17 2.7 16 5144 7 2.3 15 2.0 14
83532 8 3.0 17 2.8 17 5826 8 2.5 15 2.1 14
108260 9 3.2 18 3.0 18 6550 9 2.6 15 2.2 15
136188 10 3.3 18 3.1 18 7316 10 2.7 16 2.3 15

Table 3.6: 2d example with fixed initial mesh and homogeneous diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on p for the
preconditioned system with coefficient and stiffness scaling. Choice of primal variables:
vertex evaluation and edge averages.
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Increasing the multiplicity Increasing the smoothness
ALG. C coeff. scal stiff. scal. ALG. C coeff. scal stiff. scal.

#dofs degree κ It. κ It. #dofs degree κ It. κ It.
1000 2 2.6 12 2.6 12 1000 12 2.6 12 2.6 8
4138 3 3.2 15 3.2 16 2148 15 3.0 15 3.0 9
10604 4 3.7 18 3.7 18 3898 17 3.5 17 3.5 10
21598 5 4.2 19 4.2 20 6376 18 3.8 18 3.8 11
38320 6 4.7 20 4.7 21 9708 20 4.2 20 4.2 11
61970 7 5.1 21 5.1 23 14020 20 4.5 20 4.4 12

Table 3.7: 3d example with fixed initial mesh and homogeneous diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on p for the
preconditioned system with coefficient and stiffness scaling. Choice of primal variables:
vertex evaluation, edge averages and face averages.
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Figure 3.3: Dependence of the condition number on the B-Spline degree p for the
2d and 3d domain. We compare the influence of the considered scaling strategy and
method with increasing the degree. Choice of primal variables: vertex evaluation, edge
averages and face averages (Alg. B).



Chapter 4

Discontinuous Galerkin IETI-DP
Methods

In this chapter we are going to develop an efficient and robust solver for large-scale
systems of algebraic equations arising from IgA discretizations where the different
patches are coupled by means of a discontinuous Galerkin (dG) method, called dG-
IETI-DP. This setting is of special importance when considering non-matching meshes,
see, e.g., [148], and in case of non-matching interface parametrizations, resulting in
gap and overlapping regions at the interfaces. The latter one will be investigated in
Section 4.4, where the focus of this thesis is on the application of dG-IETI-DP methods
to such problems.

The proposed method is based on the corresponding version for FE proposed in [52]
and [57]. In these works a rigorous analysis of the dG version of the FETI-DP method
shows the same quasi-optimal condition number bounds with respect to the ratio of
patch diameter and mesh-size (H/h) of the preconditioned FETI-DP operator as for
classical FETI-DP methods for two- and three-dimensional domains. We present an
analysis of the dG-IETI-DP method that provides a quasi-optimal condition number
bound of the preconditioned system with respect to H/h. However, the presented
bound depends polynomially on the ratio of neighbouring mesh-sizes.

We introduce the dG-IETI-DP method and the required notation in Section 4.1. In
Section 4.2 we perform the condition number analysis of the dG-IETI-DP operator
with respect to H/h considering a two-dimensional domain, globally constant diffusion
coefficient and only vertex values as primal variables. Numerical experiments for two-
and three-dimensional domains are presented in Section 4.3. Finally, in Section 4.4 we
apply the dG-IETI-DP method to domains having gap and overlapping regions at the
interfaces.

57
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4.1 Derivation of the Method

Let us consider a multi-patch domain, where the interfaces are geometrically match-
ing, but not the meshes, i.e., the meshes can be different on neighbouring patches.
Therefore, the considered solution and test spaces do not provide continuity across the
patch interfaces. Hence, we cannot enforce continuity of the solution by means of the
same jump operator as for the conforming IETI-DP method introduced in Chapter 3.
As proposed in [52], we introduce an additional layer of dofs on the interfaces and
enforce continuity between the different layers. This method can then be seen as a
conforming IETI-DP method on an extended grid of dofs. We will follow the derivation
presented in [52] and [57] with adopted notations. In the following, let Vh be the dG-
IgA space which fulfils the Dirichlet boundary conditions as defined in Section 2.3.2,
and we denote by {N i,p}i∈I the corresponding B-Spline basis.

4.1.1 Basic Setup and Local Space Description

As already introduced in Section 2.3.2, let I(k)
F be the set of all indices l such that

Ω(k) and Ω(l) share a common edge/face. In the following, we will often denote I(k)
F

by F (k). If we consider three-dimensional domains, we additionally define E(klm) as
the edge shared by the patches Ω(k), Ω(l) and Ω(m), i.e., E(klm)

:= ∂F (kl) ∩ ∂F (km) for
l ∈ F (k) and m ∈ F (k). The set of all indices (l,m) of Ω(l) and Ω(m), such that E(klm)

is an edge of patch Ω(k) is denoted by E (k). For two-dimensional domains, the set E
is empty. Note, although F (lk) ⊂ ∂Ω(l) and F (kl) ⊂ ∂Ω(k) are geometrically the same,
they are treated as different objects. The same applies to the edges E(klm), E(lkm) and
E

(mkl). In order to keep the presentation of the method simple, we assume that the
considered patch Ω(k) does not touch the Dirichlet boundary. The other case can be
handled in an analogous way.

As already introduced in Section 2.2, the computational domain Ω is given by Ω =⋃N
k=1 Ω

(k), where Ω(k) = G(k)(Ω̂) for k = 1, . . . , N , and the interface corresponding to
Ω(k) by Γ(k) = ∂Ω(k)\∂Ω. For each patch Ω(k), we introduce its extended version Ω

(k)
e

via the union with all neighbouring interfaces F (lk) ⊂ ∂Ω(l):

Ω
(k)

e := Ω
(k) ∪ {

⋃
l∈I(k)
F

F
(lk)}.

Moreover, the extended interface Γ
(k)
e is given by the union of Γ(k) with all neighbouring

interfaces

Γ(k)
e := Γ(k) ∪ {

⋃
l∈I(k)
F

F
(lk)}.
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Based on the definitions above, we can introduce

Ωe :=
N⋃
k=1

Ω
(k)

e , Γ :=
N⋃
k=1

Γ(k) and Γe :=
N⋃
k=1

Γ(k)
e .

An illustration of the domain Ω
(k)
e is given in Figure 4.1. Finally, we introduce the set

of vertices V(k) associated to Ω
(k)
e by

V(k) := {
⋃
l∈I(k)
F

∂F (kl)} ∪ {
⋃
l∈I(k)
F

∂F (lk)},

for two-dimensional domains and by

V(k) := {
⋃

(l,m)∈E(k)

∂E(klm)} ∪ {
⋃

(l,m)∈E(k)

∂E(lkm) ∪ ∂E(mkl)},

for three-dimensional domains. The set V is then given by the union of all V(k).
Moreover, we denote by V(kl) ⊂ V all vertices which belong to the interface F (kl).

The next step is to describe appropriate discrete function spaces to reformulate (2.16)
in order to treat the new formulation in the spirit of the conforming IETI-DP method.
We start with a description of the discrete function spaces for a single patch. As
defined in (2.8), let V (k)

h be the discrete function space defined on the patch Ω(k).
Then we define the extended function space by

V
(k)
h,e := V

(k)
h ×

∏
l∈I(k)
F

V
(lk)
h ,

where V (lk)
h ⊂ V

(l)
h is given by

V
(lk)
h := span{N (l)

i,p | supp{N
(l)
i,p} ∩ F

(kl) 6= ∅}.

Moreover, we denote by V
(kl)
h the trace space of V (k)

h on F (kl), i.e., for u(k) ∈ V
(k)
h

we have that u(k)|F (kl) ∈ V
(kl)
h . The space V (k)

h,e can be illustrated by means of the

extended domain Ω
(k)

e . Note, for the analysis Ω
(k)

e is not required. An overview of the
local spaces is given in Figure 4.2, cf. Figure 3.1. in [52].

According to [52], we will represent a function u(k) ∈ V
(k)
h,e as

u(k) = (u(k,k), (u(k,l))
l∈I(k)
F

), (4.1)

where the functions u(k,k) ∈ V (k)
h and u(k,l) ∈ V (lk)

h possess the representations

u(k,k) =
∑

i∈I(k,k)

u
(k,k)
i N

(k)
i,p and u(k,l) =

∑
i∈I(k,l)

u
(k,l)
i N

(l)
i,p|F (kl) , (4.2)
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Figure 4.1: Illustration of the mesh in the parameter domain and in the physical
domain, presenting the used notation.

Figure 4.2: Illustration of the local spaces V (k)
h,e , V

(k)
h , V

(kl)
h , V

(lk)
h , V

(k)
I,h and W (k), and

the vertices V(k) of Ω
(k)
e . The symbols coloured in blue are still part of sets with the cor-

responding black symbols. They indicate the sets belonging to a specific neighbouring
patch.
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respectively. Here, I(k,k) contains all indices of basis functions associated to the space
V

(k)
h , whereas I(k,l) contains those indices of basis functions associated to V (lk)

h . Using
the notation from Figure 4.2, we have that I(k,k) := {�,N,F} and I(k,l) := {�, •}.
By introducing a suitable ordering, a function u(k) ∈ V (k)

h,e has a vector representation
of the form u(k) = (u

(k)
i )

i∈I(k)
e
. Moreover, we introduce an additional representation of

V
(k)
h,e as V (k)

I,h ×W (k), i.e., for u(k) ∈ V (k)
h,e , we have u(k) = (u

(k)
I , u

(k)
Be

), where

V
(k)
I,h :=V

(k)
h,e ∩H

1
0 (Ω(k)) ⊂ V

(k)
h,e ,

W (k) :=span{N (k)
i,p | suppN

(k)
i,p ∩ Γ(k) 6= ∅}

× span{N (l)
i,p| suppN

(l)
i,p ∩ Γ(k) 6= ∅, l ∈ I(k)

F } ⊂ V
(k)
h,e .

By repeating the same steps as above for the space S(k)
h , one can define the spaces S(k)

h,e ,
S

(lk)
h and S(kl)

h . Let u(k) ∈ V (k)
h,e and û(k) = (û(k,k), (û(k,l))

l∈I(k)
F

) be its representation in

S
(k)
h,e , then we have the following representation for û(k,k) ∈ S(k)

h and û(k,l) ∈ S(lk)
h

û(k,k) =
∑

i∈I(k,k)

u
(k,k)
i N̂

(k)
i,p and û(k,l) =

∑
i∈I(k,l)

u
(k,l)
i N̂

(l)
i,p|F̂ (kl) . (4.3)

As already mentioned in Section 2.2, the coefficients u(k,k)
i and u(k,l)

i in (4.2) and (4.3)
are the same for u(k) ∈ V (k)

h,e and its representation û(k) ∈ S(k)
h,e .

4.1.2 Schur Complement and Discrete Harmonic Extensions

We note that the patch local bilinear form a
(k)
e (·, ·), introduced in Section 2.3.2, can

be interpreted as it were defined on the space V (k)
h,e × V

(k)
h,e , since it requires function

values of the neighbouring patches Ω(l), l ∈ I(k)
F . Similarly, the bilinear form d(k)(·, ·)

can also be interpreted as it were defined on the space V (k)
h,e × V

(k)
h,e and it introduces a

semi-norm on V (k)
h,e . Hence, ae(·, ·) induces a matrix representation Ke satisfying the

identity

a(k)
e (u(k), v(k)) = (K(k)

e u,v)`2 for u(k), v(k) ∈ V (k)
h,e ,

where u and v denote the vector representation of u(k) and v(k), respectively. By
means of the representation V (k)

I,h ×W (k) for V (k)
h,e , we can structure the matrix K(k)

e in
the following way

K(k)
e =

[
K

(k)
e,II K

(k)
e,IBe

K
(k)
e,BeI

K
(k)
e,BeBe

]
. (4.4)
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We note that K(k)
e,II = K

(k)
II . This enables us to define the Schur complement of K(k)

e

with respect to W (k) as

S(k)
e := K

(k)
e,BeBe

−K(k)
e,BeI

(
K

(k)
e,II

)−1

K
(k)
e,IBe

. (4.5)

We denote the corresponding bilinear form by s(k)
e (·, ·), and the corresponding operator

by S(k)
e : W (k) → W (k)∗, i.e.,

(S(k)
e u

(k)
Be
,v

(k)
Be

)`2 = 〈S(k)
e u

(k)
Be
, v

(k)
Be
〉 = s(k)

e (u
(k)
Be
, v

(k)
Be

), ∀u(k)
Be
, v

(k)
Be
∈ W (k).

The Schur complement has the minimization property

〈S(k)
e u

(k)
Be
, u

(k)
Be
〉 = min

w(k)=(w
(k)
I ,w

(k)
Be

)∈V (k)
h,e

a(k)
e (w(k), w(k)), (4.6)

subject to w(k)
Be

= u
(k)
Be

on Γ
(k)
e . We now define the discrete IgA harmonic extension

H(k)
e (in the sense of a(k)

e (·, ·)) for the patch Ω
(k)
e by

H(k)
e : W (k) → V

(k)
h,e :

find H(k)
e uBe ∈ V

(k)
h,e :

a
(k)
e (H(k)

e uBe , u
(k)) = 0, ∀u(k) ∈ V (k)

I,h ,

H(k)
e uBe = uBe on Γ

(k)
e .

(4.7)

One can show that the minimizer in (4.6) is given byH(k)
e uBe . In addition, we introduce

the standard discrete IgA harmonic extension H(k) (in the sense of a(k)(·, ·)) of u(k)
Be

as
follows:

H(k) : W (k) → V
(k)
h,e :

find H(k)uBe ∈ V
(k)
h,e :

a(k)(H(k)uBe , u
(k)) = 0, ∀u(k) ∈ V (k)

I,h ,

H(k)uBe = uBe on Γ
(k)
e .

(4.8)

where a(k)(·, ·) is interpreted as bilinear form on the space V (k)
h,e × V

(k)
h,e . The crucial

point is to show the equivalence in the energy norm dh(uh, uh), defined in Section 2.3.2,
between functions which are discrete harmonic in the sense of H(k)

e and H(k). This
property is summarized in the following Lemma, cf. also Lemma 3.1 in [52].

Lemma 4.1. There exists a positive constant C which is independent of δ, hk, Hk, α
(k)

and u(k)
Be

such that the inequalities

d(k)(H(k)uBe ,H(k)uBe) ≤ d(k)(H(k)
e uBe ,H(k)

e uBe) ≤ Cd(k)(H(k)uBe ,H(k)uBe), (4.9)

hold for all u(k)
Be
∈ W (k).
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Proof. The proof is identical to that one presented for the FE case in Lemma 4.1
in [51]. Note, for the IgA version, we have to use the corresponding discrete trace
inequality

‖u‖2
L2(∂Ω(k)) ≤ Ch−1 ‖u‖2

L2(Ω(k))

that is valid for all IgA functions u from V
(k)
h , see Lemma 2.15.

The subsequent statement immediately follows from Lemma 2.18 and Lemma 4.1, see
also [52].

Corollary 4.2. The spectral equivalence inequalities

C0d
(k)(H(k)uBe ,H(k)uBe) ≤ a(k)

e (H(k)
e uBe ,H(k)

e uBe) ≤ C1d
(k)(H(k)uBe ,H(k)uBe),

(4.10)

hold for all u(k)
Be
∈ W (k), where the constants C0 and C1 are independent of δ, hk, Hk, α

(k)

and u(k)
Be
.

4.1.3 Global Space Description

Based on the definitions of the local spaces in Section 4.1.1, we can now introduce the
global spaces

Vh,e :=
N∏
k=1

V
(k)
h,e and W :=

N∏
k=1

W (k).

We note that, according to [52], we will also interpret W as subspace of Vh,e, where
its functions are discrete harmonic in the sense of H(k)

e on each Ω(k). For complete-
ness, we define the discrete IgA harmonic extension in the sense of

∑N
k=1 a

(k)
e (·, ·)

and
∑N

k=1 a
(k)(·, ·) for W as Heu = (H(k)

e u(k))Nk=1 and Hu = (H(k)u(k))Nk=1, respec-
tively.

We aim at reformulating (2.16) and (2.20) in terms of the extended space W and
introducing Lagrange multipliers in order to couple the independent interface dofs. In
the context of tearing and interconnecting methods, we need a “continuous” subspace
Ŵ of W such that Ŵ is equivalent to VΓ,h, i.e., Ŵ ≡ VΓ,h. Similarly, we need V̂h,e ⊂
Vh,e, such that V̂h,e ≡ Vh. Since the space VΓ,h consists of functions which are non-
matching across the patch interfaces, the understanding V̂h,e and Ŵ as “continuous”
space makes no sense. We follow [51], where an appropriate definition of continuity in
the context of the spaces Ŵ ,W, VΓ,h, Vh,e, V̂h,e and Vh is provided. An illustration is
given in Figure 4.3.
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Figure 4.3: Illustration of the Lagrange multipliers used to enforce continuity of the
local solutions. The dashed line indicates the continuity of the corner values (�) as
incorporated into W̃ .

Definition 4.3. We say that u ∈ Vh,e is continuous on Γe if the relations

u
(k,k)
i = u

(l,k)
j ∀(i, j) ∈ Be(k, l), ∀l ∈ I(k)

F (4.11)

and

u
(k,l)
i = u

(l,l)
j ∀(i, j) ∈ Be(l, k), ∀l ∈ I(k)

F (4.12)

hold for all k ∈ {1, . . . , N}. We denote the set of index pairs (i, j) such that the i-
th basis function in V

(k)
h can be identified with the j-th basis function in V

(l)
h (F

(kl)
)

by Be(k, l). We note that Be(k, l) 6= Be(l, k). Moreover, V̂h,e denotes the subspace of
continuous functions on Γe of Vh,e. Furthermore, V̂h,e can be identified with Vh.

The operator B : W → U∗ := RΛ, which realizes constraints (4.11) and (4.12) of the
form Bu = 0 is called jump operator.

The space of all functions in W which belong to the kernel of B is denoted by Ŵ , and
can be identified with VΓ,h, i.e.,

Ŵ := {w ∈ W |Bw = 0} ≡ VΓ,h.

Furthermore, we define by Ŵ (k) the restriction of Ŵ to Ω
(k)
e .
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Now we are in the position to reformulate (2.20) in terms of V̂h,e, leading to the
system

K̂eue = f̂ e, (4.13)

where the matrix K̂e and the right-hand side f̂ e are given by the assembly of the
patch-wise matrices K(k)

e and right-hand sides f (k)
e , i.e.,

K̂e =
N∑
k=1

A
Ω

(k)
e
K(k)

e A
T

Ω
(k)
e

and f̂ e =
N∑
k=1

A
Ω

(k)
e
f (k)
e , (4.14)

respectively. Here A
Ω

(k)
e

denotes the Boolean patch assembling matrix for Ω
(k)
e . By

means of the local Schur complements S(k)
e , see (4.4) and (4.5), we can reformulate

equation (4.13) as

ŜeuBe = ĝe, (4.15)

where Ŝe and ĝe are given by

Ŝe =

(
N∑
k=1

A
Γ

(k)
e
S(k)
e A

T

Γ
(k)
e

)
and ĝe =

N∑
k=1

A
Γ

(k)
e
g(k)
e . (4.16)

The Boolean matrix A
Γ

(k)
e

is the corresponding assembling matrix. The vector g(k) is

defined by g(k) = f
(k)
e,Be
−K(k)

e,BeI

(
K

(k)
e,II

)−1

f
(k)
e,I . Furthermore, we can rewrite (4.16)

in variational form as
N∑
k=1

〈S(k)
e u

(k)
Be
, v(k)〉 =

N∑
k=1

〈g(k)
e , v(k)〉 ∀v ∈ Ŵ , (4.17)

where uBe ∈ Ŵ , g
(k)
e ∈ Ŵ (k)∗ and S(k)

e : Ŵ (k) → Ŵ (k)∗.

In order to formulate the IETI-DP algorithm, we also define the Schur complement
and the right-hand side functional on the “discontinuous” space W , i.e.,

Se : W → W ∗, 〈Sev, w〉 :=
N∑
k=1

〈S(k)
e v(k), w(k)〉 ∀v, w ∈ W,

and

ge ∈ W ∗, 〈ge, w〉 :=
N∑
k=1

〈g(k)
e , w(k)〉 ∀w ∈ W.

In matrix and vector forms, we can write S and g as

Se := diag(S(k)
e )Nk=1 and ge := [g(k)

e ]Nk=1.
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It is easy to see that problem (4.15) is equivalent to the minimization problem

uBe = argmin
w∈W,Bw=0

1

2
〈Sew,w〉 − 〈ge, w〉. (4.18)

In the following, we will only work with the Schur complement system. In order to
simplify the notation, we will use u instead of uB, when we consider functions in VΓ,h.
If we have to made a distinction between u, uB and uI , we will add the subscripts
again.

4.1.4 Intermediate Space and Primal Constraints

The crucial point of the dual-primal approach is the definition of an intermediate space
W̃ in the sense Ŵ ⊂ W̃ ⊂ W such that Se restricted to W̃ is positive definite. The
construction of these spaces is identical as in Section 3.1.4, for completeness, we repeat
the definitions again. Let Ψ ⊂ V ∗Γ,h be a set of linearly independent primal variables.
Then we define the spaces

W̃ := {w ∈ W : ψ(w(k)) = ψ(w(l)),∀ψ ∈ Ψ, k, l ∈ {1, . . . , N} with k > l}

and

W∆ :=
N∏
k=1

W
(k)
∆ , with W

(k)
∆ := {w(k) ∈ W (k) : ψ(w(k)) = 0 ∀ψ ∈ Ψ}.

Moreover, we introduce the space WΠ ⊂ Ŵ such that W̃ = WΠ ⊕W∆. We call WΠ

primal space and W∆ dual space. If we choose Ψ such that W̃ ∩ ker(Se) = {0},
then

S̃e : W̃ → W̃ ∗, with 〈S̃ev, w〉 = 〈Sev, w〉 ∀v, w ∈ W̃ ,

is invertible and we assume that such a set is chosen. Since we are considering non-
conforming test spaces Ŵ and Vh, we cannot literally use the same set of primal
variables as presented in Section 3.1. As proposed in [52] and [57], we will use the fol-
lowing interpretation of continuity at corners, and continuity of edge and face averages.
We refer to Figure 4.3 for an illustration of continuity at the vertices, cf. Figure 4.1
in [52].

Definition 4.4. Let V(k), E (k) and F (k) be the set of vertices, edges and faces, respec-
tively, for the patch Ω

(k)
e .

We say that u ∈ W is continuous at V(k), k ∈ {1, . . . , N}, if the relations

u
(k,k)
i = u

(l,k)
j ∀(i, j) ∈ BV(k, l) (4.19)
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are valid for all l ∈ I(k)
F , where BV(k, l) ⊂ B(k, l) is given by all index pairs corre-

sponding to the vertices V(k). We define the corresponding primal variable as

ψν
(kl)

(v) :=


v

(k,k)
i if v ∈ W (k),

v
(l,k)
j if v ∈ W (l),

0 else,
(4.20)

where l ∈ I(k)
F , ν(kl) ∈ V(kl) and (i, j) ∈ BV(k, l) corresponds to ν(kl).

We say that u ∈ W has continuous (inter-)face averages at F (k), k ∈ {1, . . . , N}, if
the relations

1

|F (kl)|

∫
F (kl)

u(k,k) ds =
1

|F (kl)|

∫
F (kl)

u(l,k) ds (4.21)

hold for all l ∈ I(k)
F . We define the corresponding primal variable as

ψF
(kl)

(v) :=


1

|F (kl)|

∫
F (kl) u

(k,k) ds if v ∈ W (k),
1

|F (kl)|

∫
F (kl) u

(l,k) ds if v ∈ W (l),

0 else,

(4.22)

where l ∈ I(k)
F .

We say that u ∈ W has continuous edge averages at E (k), k ∈ {1, . . . , N}, if the
relations

1

|E(klm)|

∫
E(klm)

u(k,k) ds =
1

|E(klm)|

∫
E(klm)

u(l,k) ds, (4.23)

1

|E(klm)|

∫
E(klm)

u(k,k) ds =
1

|E(klm)|

∫
E(klm)

u(m,k) ds (4.24)

hold for all (l,m) ∈ E (k). We define the corresponding primal variable as

ψE
(klm)

(v) :=


1

|E(klm)|

∫
E(klm) u

(k,k) ds if v ∈ W (k),
1

|E(klm)|

∫
E(klm) u

(l,k) ds if v ∈ W (l),
1

|E(klm)|

∫
E(klm) u

(m,k) ds if v ∈ W (m),

0 else,

(4.25)

where (l,m) ∈ E (k).

By means of Definition 4.4, we can now introduce different sets of primal variables:

• Algorithm A: ΨA := {ψν , ∀ν ∈ V(k)}Nk=1,

• Algorithm B: ΨB := {ψν , ∀ν ∈ V(k)}Nk=1 ∪ {ψE, ∀E ∈ E (k)}Nk=1 ∪ {ψF , ∀F ∈
E (k)}Nk=1,
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• Algorithm C: ΨC := {ψν , ∀ν ∈ V(k)}Nk=1 ∪ {ψE, ∀E ∈ E (k)}Nk=1.

Remark 4.5. As mentioned in Section 3.1 for the cG-IETI-DP method, one can intro-
duce primal sets, which aim at reducing the number of primal variables, often denoted
by Algorithm D and E.

4.1.5 IETI-DP and preconditioning

Since W̃ ⊂ W , there is a natural embedding Ĩ : W̃ → W . We define the jump operator
restricted to W̃ as B̃ := BĨ : W̃ → U∗. Then we can formulate problem (4.18) as
saddle-point problem in W̃ as follows: find (u, λ) ∈ W̃ × U :[

S̃e B̃T

B̃ 0

][
u
λ

]
=

[
g̃
0

]
, (4.26)

where g̃ := ĨTg, and B̃T = ĨTBT . By construction, S̃e is SPD on W̃ . Hence, the
saddle-point system (4.26) is equivalent to the Schur complement problem:

find λ ∈ U : Fλ = d, (4.27)

with the Schur complement F := B̃S̃−1
e B̃T and the corresponding right-hand side

d := B̃S̃−1
e g̃. Equation (4.27) is solved by means of the PCG algorithm, but it requires

an appropriate preconditioner in order to obtain an efficient solver. According to [52]
and [57], the right choice for FE is the scaled Dirichlet preconditioner, adapted to the
extended set of dofs. A rigorous proof for two-dimensional domains, having globally
constant diffusion coefficient and using Algorithm A will be given in Section 4.2. The
numerical tests presented in Section 4.3 indicate that the scaled Dirichlet precondi-
tioner works well also for other sets of primal variables and diffusion coefficients, which
have jumps across the patch interfaces.

Recall the definition of Se = diag(S
(k)
e )Nk=1, we define the scaled Dirichlet preconditioner

M−1
sD as

M−1
sD := BDSeB

T
D, (4.28)

where BD is a scaled version of the jump operator B. The scaled jump operator BD

is defined such that the operator enforces the constraints

δ†
(l)

j u
(k,k)
i − δ†(k)

i u
(l,k)
j = 0 ∀(i, j) ∈ Be(k, l), ∀l ∈ I(k)

F , (4.29)

and

δ†
(l)

j u
(k,l)
i − δ†(k)

i u
(l,l)
j = 0 ∀(i, j) ∈ Be(l, k), ∀l ∈ I(k)

F , (4.30)
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where, for (i, j) ∈ Be(k, l),

δ†
(k)

i :=
ρ

(k)
i∑

l∈I(k)
F
ρ

(l)
j

is an appropriate scaling. As in Section 3.1.6, typical choices for ρ(k)
i are

• Multiplicity Scaling: ρ(k)
i := 1,

• Coefficient Scaling: If α(x)|Ω(k) = α(k), choose ρ(k)
i := α(k),

• Stiffness Scaling: ρ(k)
i := Ke

(k)
i,i .

Since we can consider the dG-IETI-DP method as a conforming Galerkin (cG) method
on an extended grid, we can implement the dG-IETI-DP algorithm following the im-
plementation of the corresponding cG-IETI-DP method given in Section 3.2. For com-
pleteness, we give an outline of the algorithm. The Schur complement system (4.27)
is solved using a CG algorithm with the preconditioner given in (4.28). The applica-
tion of F and M−1

sD is outlined in Algorithm 4 and Algorithm 5, cf. Algorithm 2 and
Algorithm 3 in Chapter 3 for the cG-IETI-DP method.

Algorithm 4 Algorithm for the calculation of ν = Fλ for given λ ∈ U
procedure F (λ)

Application of BT : {f (k)}Nk=1 = BTλ

Application of ĨT : {fΠ, {f
(k)
∆ }Nk=1} = ĨT

(
{f (k)}Nk=1

)
Application of S̃−1

e :
Begin
wΠ = S−1

e,ΠΠfΠ

w
(k)
∆ = S

(k)
e,∆∆

−1
f

(k)
∆ ∀k = 1, . . . , N

End
Application of Ĩ : {w(k)}Nk=1 = Ĩ

(
{wΠ, {w(k)

∆ }Nk=1}
)

Application of B : ν = B
(
{w(k)}Nk=1

)
end procedure

4.2 Analysis of the Condition Number

This section deals with the analysis of the condition number for the discontinuous
Galerkin variant of the IETI-DP algorithm.

In [52] and [57], it is proven for FE that the condition number of the preconditioned
dG-FETI-DP method has the same polylogarithmic bound with respect to H/h as the
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Algorithm 5 Algorithm for the calculation of ν = M−1
sDλ for given λ ∈ U

procedure M−1
sD (λ)

Application of BT
D : {w(k)}Nk=1 = BT

Dλ
Application of Se :
Begin

Solve: K(k)
e,IIx

(k) = −K(k)
e,IBw

(k)

v(k) = K
(k)
e,BBw

(k) +K
(k)
e,BIx

(k).
End
Application of BD : ν = BD

(
{v(k)}Nk=1

)
end procedure

continuous FETI-DP method, see also [51] for dG-BDDC FE preconditioners. From
Section 3.3, we know that the condition number of the continuous IETI-DP and BDDC-
IgA operators is also quasi-optimal with respect to the ratio of patch and mesh-size.
We prove that the condition number for the dG-IETI-DP operator behaves as

κ(M−1
sDF|ker(B̃T )) ≤ C max

k

(
1 + log

(
Hk

hk

))2

,

where Hk and hk are the patch size and mesh-size, respectively, and the positive
constant C is independent of Hk, hk, but depends on hk/hl and δ. However, the bound
proven in [52] for the FE version is independent of the two parameters δ and hk/hl. We
use the fact that the IETI-DP method and the BDDC preconditioner have the same
spectrum, up to some zeros and ones, which was proven in [159] based on algebraic
arguments. So we will prove the condition number bound for the corresponding BDDC
method and the result then also applies to the dG-IETI-DP method. We can use the
framework developed in [17] also for the dG variant, since the dG-IETI-DP method can
be seen as a IETI-DP method on an extended spaceW . In the next section we provide
some auxiliary results, which will be needed for the proof in Section 4.2.2.

4.2.1 Auxiliary Results

In this section, we define a discrete norm | · |k,dG for the space V (k)
h,e , based on the

coefficient vector u(k) = (u
(k)
i )

i∈I(k)
e
, which can be seen as the discrete analogue of the

norm induced by d(k)(·, ·), which is denoted by ‖ · ‖k,dG, see also Section 2.3.2. The
difficulty is that the grids on F (kl) and F (lk) do not match and, hence, the coefficients
corresponding to that part cannot be directly related. We will resolve that issue using
a L2-projection onto F (lk). In the following, we will always focus on the case d = 2
with continuous vertex values only.

We rephrase important definitions and results from [19] and Section 3.3 with small
adjustment due to considering the dG-formulation.
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Let hk and ĥk be the characteristic mesh-sizes in Ω(k) and Ω̂(k), respectively. Since
the geometry mapping G(k) is fixed on a coarse discretization, it is independent of hk.
Moreover, by basic properties of G(k), we can assume that there exists a constant C,
independent of Hk and hk, such that

C−1ĥk ≤ hk/Hk ≤ Cĥk, (4.31)

where Hk is the diameter of Ω(k). Given a face F (kl) in Ω(k) with diameter HF (lk) ,
we denote its parameter domain representation as F̂ (kl). The mesh-size on F (kl) and
F (lk) is given by hF (kl) and hF (kl) , respectively. Moreover, we assume for all l ∈ I(k)

F
that hF (kl) ≈ hk, hF (lk) ≈ hl and Hk ≈ HF (kl) ≈ Hl. Together with (4.31), it follows
that

hkl ≈ Hkĥkl ≈ Hlĥkl. (4.32)

An illustration is given in Figure 4.1.

Assumption 4. We assume that there exists a constant β ∈ R+ such that β−1M
(k)
2 ≤

M
(k)
1 ≤ βM

(k)
2 , where M (k)

1 and M (k)
2 are the number of basis functions on Ω(k) along

dimension 1 and 2, respectively, see Section 2.2.

According to [19] and Section 3.3, we define a discrete norm and semi-norm based on
the coefficients (ui)i∈I , which should mimic the L2 norm and H1 semi-norm, respec-
tively.

Definition 4.6. Let u(k) ∈ V (k)
h,e , and let û(k) be its counterpart in S(k)

h,e . We define the
discrete norm ‖ · ‖2

k,� and semi-norm | · |2k,∇ on S(k)
h,e as

‖û(k,k)‖2
k,� :=

∑
i∈I(k,k)

|u(k,k)
i |2ĥ2

k,

|û(k,k)|2k,∇ :=
∑

i∈I(k,k)
1

|u(k,k)
(i1,i2) − u

(k,k)
(i1−1,i2)|

2 +
∑

i∈I(k,k)
2

|u(k,k)
(i1,i2) − u

(k,k)
(i1,i2−1)|

2,

where for i ∈ I(k,k)
1 , I(k,k)

2 ⊂ I(k,k) are defined such that u(k,k)
(i1−1,i2) and u

(k,k)
(i1,i2−1) are well

defined, respectively.

Analogously, we define the discrete norm ‖ · ‖2
lk on the space S(lk)

h , as

‖û(k,l)‖2
lk :=

∑
i∈I(k,l)

|u(k,l)
i |2ĥl.

Proposition 4.7. Let u(k) ∈ V
(k)
h,e , and let û(k) be its counterpart in S

(k)
h,e . We have

that

‖û(k,k)‖2
k,� ≈ ‖û(k,k)‖2

L2((0,1)2) ≈ H−2
k ‖u

(k,k)‖2
L2(Ω(k)),

|û(k,k)|2k,∇ ≈ |û(k,k)|2H1((0,1)2) ≈ |u(k,k)|2H1(Ω(k)),

‖û(k,l)‖2
lk ≈ ‖û(k,l)‖2

L2((0,1)) ≈ H−1
k ‖u

(k,l)‖2
L2(F (kl)),

where the hidden constants do not depend on hk or Hk.
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Proof. Follows directly from Corollary 5.1. and Proposition 5.2. in [19], Assump-
tion 3 and the equivalence between of norms in the parameter and physical space, see
Corollary 2.12.

Next, we define the L2-projection, in order to provide an approximation of u(k,l) on
F (lk).

Definition 4.8. We denote the L2-orthogonal projection onto V (lk)
h by πF (lk) : L2(F (kl))→

V
(lk)
h and its coefficients by ũ(k,l)

i , i.e.,

πF (lk)v :=
∑

i∈I(k,l)

ũ
(k,l)
i N

(l)
i,p|F (kl) . (4.33)

Lemma 4.9. Let v(k) ∈ V (k)
h and πF (lk) be as in Definition 4.8. Then the estimate

‖v(k) − πF (lk)v(k)‖2
L2(F (kl)) ≤ Chl

hl
hk
|v(k)|2H1(Ω(k))

holds, where the generic constant C is independent of hk, hl or Hk.

Proof. Since πF (lk) is the L2-orthogonal projection, we have that

‖v(k) − πF (lk)v(k)‖2
L2(F (kl)) ≤ ‖v

(k) − IF (lk)v(k)‖2
L2(F (kl)),

where IF (lk) : L2(F (kl)) → V
(lk)
h is the B-Spline quasi-interpolant. By means of the

interpolation estimate

‖v(k) − IF (lk)v(k)‖2
L2(F (kl)) ≤ Ch2

l |v(k)|2H1(F (kl))

and the discrete trace inequality, see, e.g., Lemma 4.3. in [59],

|v(k)|2H1(F (kl)) ≤ Ch−1
k |v

(k)|2H1(Ω(k)),

we have

‖v(k) − πF (lk)v(k)‖2
L2(F (kl)) ≤ Ch2

l |v(k)|2H1(F (kl)) ≤ Chl
hl
hk
|v(k)|2H1(Ω(k)),

which proves the estimate.

Now, we are in the position to define the discrete dG-norm, and prove bounds in terms
of ‖ · ‖k,dG, as introduced in the beginning of Section 4.2.1.

Definition 4.10. Let u(k) ∈ V (k)
h,e , and let û(k) be its counterpart in S

(k)
h,e . Moreover,

for l ∈ I(k)
F , let πF (lk)u

(k,k)

F (kl) be the L2-projection onto V (lk)
h according to Definition 4.8
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with coefficients (ũ
(k,l)
i )i∈I(k,l) as in (4.33). We define the discrete dG-norm | · |k,dG on

V
(k)
h,e as

|û(k)|2k,dG :=|û(k,k)|2k,∇ +
∑
l∈I(k)
F

δ

ĥkl
‖ u(k,l) − πF (lk) u

(k,k)

|F (kl)‖2
lk (4.34)

=|û(k,k)|2k,∇ +
∑
l∈I(k)
F

δ

ĥkl

∑
i∈I(k,l)

|u(k,l)
i − ũ(k,l)

i |2ĥl, (4.35)

where δ is as in (2.17).

Proposition 4.11. Let u(k) ∈ V (k)
h,e , and let û(k) be its counterpart in S

(k)
h,e . Then we

have

|û(k)|2k,dG ≤ C‖u(k)‖2
k,dG, (4.36)

and

‖u(k)‖2
k,dG ≤ Cδq

(k)
h |û

(k)|2k,dG, (4.37)

where q(k)
h := max

l∈I(k)
F

{
1,
(
hl
hk

+
h2
l

h2
k

)}
and the generic constant C is independent of

hk, Hk and δ.

Proof. We first prove (4.36). The discrete dG-norm is defined as

|û(k)|2k,dG = |û(k,k)|2k,∇ +
∑
l∈I(k)
F

δ

ĥkl
‖û(k,l) − πF (lk)û

(k,k)

|F (kl)‖2
lk,

where we can immediately bound the first term according to Proposition 4.7 by

|û(k,k)|2k,∇ ≤ C|u(k,k)|2H1(Ω(k)). (4.38)

For the second term, it holds∑
l∈I(k)
F

δ

ĥkl
‖û(k,l) − πF (lk)û

(k,k)

|F (kl)‖2
lk ≤C

∑
l∈I(k)
F

δHk

hkl
‖û(k,l) − πF (lk)û

(k,k)

|F (kl)‖2
lk

≤C
∑
l∈I(k)
F

δ

hkl
‖u(k,l) − πF (lk)u

(k,k)

|F (kl)‖2
L2(F (kl))

=C
∑
l∈I(k)
F

δ

hkl
‖πF (lk)

(
u(k,l) − u(k,k)

|F (kl)

)
‖2
L2(F (kl))

≤C
∑
l∈I(k)
F

δ

hkl
‖u(k,l) − u(k,k)

|F (kl)‖2
L2(F (kl)), (4.39)
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where we used (4.32), Proposition 4.7, the fact that πF (lk)u(k,l) = u(k,l) and the stability
of the L2-projection in the L2 norm. Combining (4.38) and (4.39) gives

|û(k)|2k,dG ≤ C
(
|u(k,k)|2H1(Ω(k)) +

∑
l∈I(k)
F

δ

hkl
‖u(k,l) − u(k,k)

|F (kl)‖2
L2(F (kl))

)
= C‖u(k)‖2

k,dG,

where C is a generic constant independent of h and H. We now proof the second
estimate (4.37). The dG-norm reads

‖u(k)‖2
k,dG = |u(k)|2H1(Ω(k)) +

∑
l∈I(k)
F

δ

hkl
‖u(k,l) − u(k,k)

|F (kl)‖2
L2(F (kl)).

Similar as before, we bound the first term by means of Proposition 4.7 via

|u(k)|2H1(Ω(k)) ≤ C|û(k,k)|2k,∇. (4.40)

For the second term, we have for l ∈ I(k)
F by means of the triangle inequality

‖u(k,l) − u(k,k)

|F (kl)‖2
L2(F (kl)) ≤ ‖u

(k,l) − πF (lk)u
(k,k)

|F (kl)‖2
L2(F (kl)) + ‖πF (lk)u

(k,k)

|F (kl) − u
(k,k)

|F (kl)‖2
L2(F (kl)).

(4.41)

The first term in the right-hand side of (4.41) can be estimated by means of Proposi-
tion 4.7 by

‖u(k,l) − πF (lk)u
(k,k)

|F (kl)‖2
L2(F (kl)) ≤ CHk‖û(k,l) − πF (lk)û

(k,k)

|F (kl)‖2
lk. (4.42)

For the second term in (4.41), Lemma 4.9 yields

‖πF (lk)u
(k,k)

|F (kl) − u
(k,k)

|F (kl)‖2
L2(F (kl)) ≤ Chl

hl
hk
|u(k,k)|2H1(Ω(k)).

Since u(k,k) ∈ V (k)
h and according to Proposition 4.7, we obtain

‖πF (lk)u
(k,k)

|F (kl) − u
(k,k)

|F (kl)‖2
L2(F (kl)) ≤ Chl

hl
hk
|û(k,k)|2k,∇. (4.43)

Combining (4.41) with (4.42) and (4.43) and using hl
hkl

hl
hk

= 1
2

(
hl
hk

+
h2
l

h2
k

)
, |I(k)

F | ≤ 4

and (4.32), we obtain the estimate∑
l∈I(k)
F

δ

hkl
‖u(k,l) − u(k,k)

|F (kl)‖2
L2(F (kl)) ≤ C

(
2δ max

l∈I(k)
F

(
hl
hk

+
h2
l

h2
k

)
|û(k,k)|2k,∇

+
∑
l∈I(k)
F

δ

ĥkl
‖û(k,l) − πF (lk)û

(k,k)

|F (kl)‖2
lk

)
.

(4.44)

Summing up (4.40) and (4.44) concludes the proof.
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We now provide properties of the local index spaces. Since we consider only the two-
dimensional problem, we can interpret the coefficients (u

(k)
i )

i∈I(k)
e

of u(k) ∈ V (k)
h,e as a

matrix plus four additional vectors for the extra boundary, i.e.,

C(k)
e := (C(k,k), (c(k,l))

l∈I(k)
F

) ∈ R(k)
e := RM

(k)
1 ×M(k)

2 ×
∏
l∈I(k)
F

RM(lk)

,

where C(k,k) := (u
(k)
i )i∈I(k,k) and c(k,l) := (u

(k,l)
i )i∈I(k,l) for l ∈ I(k)

F . The number M (lk)

denotes the number of coefficients associated to F̂ (lk), i.e., M (lk) = |I(k,l)|. We note
that there exists a ι∗ ∈ {1, 2} such that M (lk) = M

(l)
ι∗ .

The entries of the matrix C(k)
e can be interpreted as values on a uniform grid T (k)

e :=

T (k) ∪
⋃
l∈I(k)
F
T (kl) on Ω̂e, where T (k) and T (kl) are the grids corresponding to C(k,k)

and c(k,l), respectively. The meshes T (k) and T (kl) have a characteristic mesh-size

h̃k :=

(
1

(M
(k)
1 − 1)2

+
1

(M
(k)
2 − 1)2

)1/2

and h̃(lk) :=
1

M (lk) − 1
,

respectively. Hence, we have

C−1
β,k

1

M
(k)
1

≤ h̃k ≤ Cβ,k
1

M
(k)
1

, and C−1
β,l h̃l ≤ h̃(lk) ≤ Cβ,lh̃l,

where the constants Cβ,k and Cβ,l depend only on β. By the basic properties of the
geometrical mapping G and the B-Splines N̂ i,p, it is easy to see that

C−1
G,βh̃k ≤ hk/Hk ≤ h̃kCG,β and C−1

β h̃k ≤ ĥk ≤ Cβh̃k, (4.45)

where the the constant Cβ depends only on β, and the constant CG,β additionally also
on G. Finally, we define the harmonic average h̃kl := 2h̃kh̃l/(h̃k + h̃l).

We are now able to introduce a dG-norm on the discrete coefficient-space R(k)
e as

follows

|||C(k)
e |||2k,dG := |C(k,k)|2k,∇ +

∑
l∈I(k)
F

δ

h̃kl

M(lk)∑
i=1

|u(k,l)
i − ũ(k,l)

i |2h̃l, (4.46)

where |C(k,k)|2k,∇ has to be understood as applying the norm |·|2k,∇ to the corresponding
function in V (k)

h and ũ(k,l)
i , is defined analogously as in Definition 4.10. We note that,

for given function u ∈ V (k)
h,e with coefficient representation Ce ∈ R(k)

e , we have

C−1|û|2k,dG ≤ |||Ce|||2k,dG ≤ C|û|2k,dG, (4.47)
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where the constant C depends only on the constants CG,β and C−1
β,k from patch k and

all its neighbouring patches.

This motivates the definition of an operator (·)I : C(Ω̂
(k)

e ) → R(k)
e , where C(Ω̂

(k)

e ) :=

C(Ω̂
(k)

) ×
∏4

i=1C(F̂
(kl)

), which evaluates a continuous function on Ω̂
(k)

e in the grid
points xi of Te. Moreover, we introduce an operator χ(k) : R(k)

e → H1(Ω̂e) := H1(Ω̂)×∏
l∈I(k)
F
H1(F̂ (lk)), that provides a piecewise bilinear interpolation of the given grid

values, i.e., χ(k)(v) ∈ Q1(T (k)
e ) := Q1(T (k)) ×

∏
l∈I(k)
F
P1(T (kl)). Here Q1(T (k)) is the

space of piecewise bilinear functions on T (k) and P1(T (kl)) the space of piecewise linear
functions on T (kl).

Given values on an edge F̂ (kl)
e := F̂ (kl) ∪ F̂ (lk) and its associated grid T (kl)

e := T (k)

|F̂ (kl)
∪

T (l,k), we need to define its linear interpolation and a discrete harmonic extension
to the interior. In order to do so, let us denote all indices of grid points xi as-
sociated to F̂

(kl)
e by I(F̂

(kl)
e ). Additionally, let P1(T (kl)

e ) := P1(T (kl)) × P1(T (lk))

be the space of piecewise linear spline functions on T (kl)
e . We define the interpola-

tion of values on F̂
(kl)
e via the restriction of the operator χ(k) to F̂

(kl)
e , denoted by

χ
(k)

F̂
(kl)
e

: RM
(k)
ι +M(lk) → H1(F̂ (kl)) × H1(F̂ (lk)) with an analogous definition. In a sim-

ilar way, we define the interpolation operator for the whole boundary Γ(k), denoted
by χ(k)

Γ,e : RM
(k)
Γ → H1(∂Ω̂(k))×

∏
l∈I(k)
F
H1(F̂ (lk)), where M (k)

Γ := 2M
(k)
1 + 2M

(k)
2 − 4 +∑

l∈I(k)
F
M (lk). Similar as in Section 3.3, we define a semi-norm for values on grid points

on an edge F̂ (kl) via the interpolation to functions in P1(T (kl)
e ):

Definition 4.12. Let F̂ (kl) be an edge of Ω̂(k). Then we define the semi-norm |||v|||F̂ (kl) :=

|χ(k)

F̂ (kl)
(v)|H1/2(F̂ (kl)) for all v ∈ R|I(F̂ (kl))|.

Definition 4.13. Let H(k)
Q1,e

be the standard discrete harmonic extension in the sense
of a(k)

e (·, ·) into the piecewise bilinear space Q1,e, see [52] for a formal definition. This
defines the lifting operator H(k)

e : RM
(k)
Γ → R(k)

e by

b 7→H(k)
e (b) := (H(k)

Q1,e
(χ

(k)
Γ,e(b)))I .

Theorem 4.14. Let F̂ (kl) be a particular side of ∂Ω̂(k) and Assumption 4 be fulfilled.
Then the following statements hold:

1. For all b ∈ RM
(k)
Γ that vanish on the twelve components corresponding to the

twelve corners V(k), see Figure 4.2 and Figure 4.3, the estimate

|||H(k)
e (b)|||2k,dG ≤Cδq̃

(k)
h (1 + log2 h̃−1

k )∑
l∈I(k)
F

(
|||b|F̂ (kl) |||2F̂ (kl) +

δ

h̃kl

M(lk)∑
i=1

|b(k,l)
i − b̃(k,l)

i |2h̃l
)
,
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holds, where q̃(k)
h := max

l∈I(k)
F

{
1,
(
h̃l
h̃k

+
h̃2
l

h̃2
k

)}
and the constant C does not depend

on hk, Hk and δ.

2. The estimate

|||C|||2k,dG ≥ C
(
|||C|F̂ (kl)|||2F̂ (kl) +

∑
l∈I(k)
F

δ

h̃kl

M(lk)∑
i=1

|u(k,l)
i − ũ(k,l)

i |2h̃l
)

is valid for all C ∈ R(k)
e , and the constant C does not depend on hk, Hk and δ.

Proof. For a better readability, we will omit the superscript (k).

The discrete dG-norm for matrices is defined as

|||He(b)|||2k,dG = |He(b)|2k,∇ +
∑
l∈IF

δ

h̃kl

M(lk)∑
i=1

|b(k,l)
i − b̃(k,l)

i |2h̃l.

By means of a similar estimate for piecewise bilinear functions as in Proposition 4.7,
we obtain the estimates

|He(b)|2k,∇ = |HQ1,e (χΓ,e(b)) |2k,∇ ≤ C|HQ1,e (χΓ,e(b)) |2H1(Ω̂)
,

M(lk)∑
i=1

|b(k,l)
i − b̃(k,l)

i |2h̃2
l = ‖χF̂ (lk)(b)− πF̂ (lk)χF̂ (kl)(b)‖2

lk

≤ C‖χF̂ (lk)(b)− πF̂ (lk)χF̂ (kl)(b)‖2
L2(F̂ (kl))

≤ C‖χF̂ (lk)(b)− χF̂ (kl)(b)‖2
L2(F̂ (kl))

,

and, therefore,

|||He(b)|||2k,dG ≤C
(
|HQ1,e (χΓ,e(b)) |2H1(Ω̂)

+
∑
l∈IF

δ

h̃kl
‖χF̂ (lk)(b)− χF̂ (kl)(b)‖2

L2(F̂ (kl))

)
=C‖HQ1,e(χΓ,e(b))‖2

k,dG.

We use the FE equivalent of Lemma 4.1, see Lemma 3.1 in [51], in order to estimate
‖HQ1,e(χΓ,e(b))‖2

k,dG ≤ C‖HQ1(χΓ,e(b))‖2
k,dG, where the constant C is independent of

hk, Hk and δ, and HQ1 is the standard discrete harmonic extension in the sense of
a(k)(·, ·). Hence, we obtain

‖HQ1,e(χΓ,e(b))‖2
k,dG ≤C

(
|HQ1

(
χΓ,e(b)

)
|2
H1(Ω̂)

+
∑
l∈IF

δ

h̃kl
‖χF̂ (lk)(b)− χF̂ (kl)(b)‖2

L2(F̂ (kl))

)
. (4.48)
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For the second term on the right-hand side of inequality (4.48), we use the estimate

‖χF̂ (lk)(b)− χF̂ (kl)(b)‖2
L2(F̂ (kl))

≤‖χF̂ (lk)(b)− πF̂ (lk)χF̂ (kl)(b)‖2
L2(F̂ (kl))

+ ‖πF̂ (lk)χF̂ (kl)(b)− χF̂ (kl)(b)‖2
L2(F̂ (kl))

, (4.49)

where the first term can be estimated by the FE equivalent of Proposition 4.7 with

‖χF̂ (lk)(b)− πF̂ (lk)χF̂ (kl)(b)‖2
L2(F̂ (kl))

≤ C‖χF̂ (lk)(b)− πF̂ (lk)χF̂ (kl)(b)‖2
lk

= C

M(lk)∑
i=1

|b(k,l)
i − b̃(k,l)

i |2h̃l. (4.50)

Since χF̂ (kl)(b) is a piecewise linear function, we can use already existent estimates for
the L2-projection. We use the following estimate to bound the second term of (4.49)

‖πF̂ (lk)χF̂ (kl)(b)− χF̂ (kl)(b)‖2
L2(F̂ (kl))

≤ Ch̃l
h̃l

h̃k
|HQ1 (χΓ,e(b)) |2H1(Ω̂)

, (4.51)

which follows by repeating the same arguments as in the proof of Lemma 4.9 for
bilinear functions. Combining inequalities (4.50) and (4.51) with (4.49) and using it
in (4.48) gives

‖HQ1(χΓ,e(b))‖2
k,dG ≤ C

(
δq̃h|HQ1 (χΓ,e(b)) |2H1(Ω̂)

+
∑
l∈IF

δ

h̃kl

M(lk)∑
i=1

|b(k,l)
i − b̃(k,l)

i |2h̃l
)
. (4.52)

We are now in the position to use the available theory for the standard discrete har-
monic extension HQ1 to estimate the first term of (4.52). Recalling the estimate

|HQ1 (χΓ,e(b)) |2H1(Ω̂)
≤ C(1 + log2 h̃−1

k )
∑
l∈IF

|χF̂ (kl)(b)|2H1/2(F̂ (kl))
,

see Theorem. 5 in [158] or the proof of Theorem 5.1. in [19], and since |χF̂ (kl)(b)|2
H1/2(F̂ (kl))

=

|||b|F̂ (kl) |||2
F̂ (kl) , we obtain

|||He(b)|||2k,dG ≤Cδq̃
(k)
h (1 + log2 h̃−1

k )∑
l∈IF

(
|||b|F̂ (kl)|||2F̂ (kl) +

δ

h̃kl

M(lk)∑
i=1

|b(k,l)
i − b̃(k,l)

i |2h̃l
)
.

This proves the first inequality. Again, by means of a similar estimate for piecewise
bilinear functions as in Proposition 4.7 and according to Theorem 5.1(b) in [19], we
have

|C(k,k)|2k,∇ ≥ C|χ(C(k,k))|2
H1(Ω̂)

≥ C|||C|F̂ (kl)|||2F̂ (kl) .
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Therefore, we finally arrive at the estimate

|||C|||2k,dG = |||C(k,k)|||2k,∇ +
∑
l∈IF

δ

h̃kl

M(lk)∑
i=1

|u(k,l)
i − ũ(k,l)

i |2h̃l

≥ C

(
|||C|F̂ (kl)|||2F̂ (kl) +

∑
l∈IF

δ

h̃kl

M(lk)∑
i=1

|u(k,l)
i − ũ(k,l)

i |2h̃l
)
,

which concludes the proof.

4.2.2 Condition Number Bound

The goal of this section is to establish the condition number bound for M−1
BDDCŜ.

Following [19], we assume that the mesh is quasi-uniform on each subdomain and the
diffusion coefficient is globally constant. Moreover, in [19], one can also find a formal
definition of the BDDC preconditioner M−1

BDDC . It was already pointed out that the
spectrum of M−1

BDDCŜ is equal to M−1
sDF up to zeros and ones. For simplicity, we focus

on a patch Ω(k), with k ∈ {1, . . . , N}, which does not touch the boundary ∂Ω.

Let u(k) ∈ V (k)
h,e , then u

(k) is determined by its coefficients (u
(k)
i ), i ∈ I, which can be

interpreted as a matrix C(k)
e = (C(k,k), (c(k,l))

l∈I(k)
F

) ∈ R(k)
e . In a similar way, we can

identify functions on the trace spaceW (k). For completeness we rephrase Theorem 3.19
according to the current notation, cf. Theorem 6.1 in [18], which provides an abstract
estimate of the condition number using the multiplicity scaling.

Theorem 4.15. Let δ†(k) be chosen accordingly to the multiplicity scaling strategy.
Assume that there exist two positive constants c∗, c∗ and a boundary semi-norm | · |W (k)

on W (k), k = 1, . . . , N , such that

|w(k)|2W (k) ≤ c∗s(k)
e (w(k), w(k)) ∀w(k) ∈ W (k), (4.53)

|w(k)|2W (k) ≥ c∗s
(k)
e (w(k), w(k)) ∀w(k) ∈ W (k)

∆ , (4.54)

|w(k)|2W (k) =
∑
l∈I(k)
F

|w(k)|
F

(kl)
e
|W (kl) ∀w(k) ∈ W (k), (4.55)

where | · |W (kl) is a semi-norm associated to the edge spaces W (k)|
F

(kl)
e

with l ∈ I(k)
F .

Then the condition number of the preconditioned BDDC operator M−1
BDDCŜ satisfies

the bound

κ(M−1
BDDCŜ) ≤ C(1 + c−1

∗ c
∗),

where the constant C is independent of h and H.
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Using this abstract framework, we obtain the following condition number estimate for
the BDDC preconditioner.

Theorem 4.16. Let Ω ⊂ R2, and let W̃ be given as set of all functions from W , that
are continuous at the corners ν ∈ V(k) of Ω(k), k = 1, . . . N , cf., Figure 4.2 and Fig-
ure 4.3. Moreover, we assume that the diffusion coefficient α is globally constant. Then
there exists a boundary semi-norm such that the constants c∗ and c∗ of Theorem4.15
are bounded by

c∗ ≤ C1 and c−1
∗ ≤ δ2C2 max

1≤k≤N
l∈I(k)
F

(
hl
hk

+
h2
l

h2
k

)2

max
1≤k≤N

(
1 + log2

(
Hk

hk

))
,

where the C1 and C2 positive constants that are independent of H and h . Therefore,
the spectral condition number of the isogeometric preconditioned BDDC operator is
bounded by

κ(M−1
BDDCŜ) ≤ Cδ2 max

1≤k≤N
l∈I(k)
F

(
hl
hk

+
h2
l

h2
k

)2

max
1≤k≤N

(
1 + log2

(
Hk

hk

))
,

where the constant C is independent of H, h and δ.

Proof. The first step is to appropriately define the semi-norm | · |2
W (k) in W (k):

|w(k)|2W (k) :=
∑
l∈I(k)
F

|w(k)|
F

(kl)
e
|2W (kl) ,

|w(k)|
F

(kl)
e
|2W (kl) := |||w(k)|F (kl) |||2F (kl) + |w(k)|F (kl) |2k,∇ +

δ

h̃kl
‖w(k,l) − πF (lk)w

(k)

|F (kl)‖2
lk,

where |w(k)|F (kl) |2k,∇ has to be understood as the restriction of the discrete semi-norm to
F (kl), cf., Definition 4.6. This essentially gives the differences along F (kl). Furthermore,
we define |||w(k)|F (kl) |||F (kl) := |||w|||F (kl) , where w are the values (wi)i∈I(F (kl)) written as
a vector.

Given w(k) ∈ W (k), we define its IgA harmonic extension by u(k) = H(k)
e (w(k)) with

coefficients C(k)
e := (C(k,k), (c(k,l))

l∈I(k)
F

). Now we consider a single edge F (kl), since

|||w(k)|F (kl)|||2
F (kl) = |||C|(k,k)

F̂ (kl)
|||2
F̂ (kl) and ‖w(k,l)−πF (lk)w

(k)

|F (kl)‖2
lk =

∑
i∈I(k,l) |w(k,l)

i −w̃(k,l)
i |2ĥl,

we can estimate

|||w(k)|F (kl)|||2F (kl) +
δ

h̃kl
‖w(k,l) − πF (lk)w

(k)

|F (kl)‖2
lk ≤ C|||C(k)

e |||2k,dG,

by means of Theorem 4.14(b) and (4.45). Moreover, the second term of | · |2
W (kl) is a

part of ||| · |||2k,dG. Hence, we obtain the inequality

|w(k)|F (kl) |2W (kl) ≤ C|||C(k)
e |||2k,dG.
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By means of Proposition 4.11, it follows that

|w(k)|F (kl) |2W (kl) ≤ C|||C(k)
e |||2k,dG ≤ C|û(k)|2k,dG ≤ C‖u(k)‖2

k,dG.

Using Lemma 4.1 and Corollary 4.2, we can estimate

‖u(k)‖2
k,dG =‖H(k)

e (w(k))‖2
k,dG ≤ C‖H(k)(w(k))‖2

k,dG

≤ Ca(k)
e (H(k)

e (w(k)),H(k)
e (w(k))) = Cs(k)

e (w(k), w(k)),

and we arrive at |w(k)|F (kl)|2
W (kl) ≤ Cs

(k)
e (w(k), w(k)). Since this estimate holds for the

four edges of the patch, we obtain

|w(k)|2W (k) ≤ Cs(k)
e (w(k), w(k)) ∀w ∈ W (k),

where the constant C is independent of hk and Hk, which proves the upper bound.

For the lower bound, let w(k) ∈ W
(k)
∆ . We apply the lifting operator H(k)

e to its
coefficient representation w(k) ∈ RM

(k)
Γ , and obtain a matrix H(k)

e (w(k)) with en-
tries (ui

(k))i∈I(k) . According to (4.2), these entries define a spline function u(k) :=
(u(k,k), (u(k,l))

l∈I(k)
F

). We observe the estimate

δq
(k)
h |||H

(k)
e (w(k))|||2k,dG ≥ Cδq

(k)
h |û

(k)|2k,dG ≥ C‖u(k)‖2
k,dG ≥ Ca(k)

e (u(k), u(k))

≥ Ca(k)
e (H(k)

e (w(k)),H(k)
e (w(k))) = Cs(k)

e (w(k), w(k)), (4.56)

where we used inequality (4.37), (4.47), Lemma 2.18 and the fact that H(k)
e (w(k))

minimizes the energy among given boundary data w(k). By means of Theorem 4.14(a),
we can estimate

|||H(k)
e (w(k))|||2k,dG ≤Cδq̃

(k)
h (1 + log2 h̃−1

k )∑
l∈I(k)
F

(
|||w(k)|F (kl) |||2F (kl) +

δ

h̃kl

M(lk)∑
i=1

|u(k,l)
i − ũ(k,l)

i |2h̃l
)

≤Cq̃(k)
h (1 + log2 h̃−1

k )|w(k)|2W (k) . (4.57)

Combining (4.56) and (4.57) gives

s(k)
e (w(k), w(k)) ≤ Cδ2q

(k)
h q̃

(k)
h (1 + log2 h̃−1

k )|w(k)|2W (k) .

Due to (4.45), we have h̃k ≈ hk/Hk, and since Hk ≈ Hl we obtain q̃h ≈ qh. Taking the
maximum over all patches proves the upper bound. By applying Theorem 4.15, the
condition number bound follows.
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Remark 4.17. The dependence of the condition number on hl/hk and δ originates
from (4.37), when estimating the L2-norm of the jumps on F (kl) by the discrete norm
‖ · ‖lk using the L2-orthogonal projection. To be more precise, when using Lemma 4.9
in order to estimate the ‖πF (lk)u

(k,k)

|F (kl) − u
(k,k)

|F (kl)‖2
L2(F (kl))

by the H1-semi-norm the ratio
hk/hl and the parameter δ are added to the semi-norm. Moreover, in the proof of
Theorem 4.14, we obtain again the same dependence by repeating the proof of Propo-
sition 4.11 for piecewise linear functions. By combining the estimates in the proof of
Theorem 4.16, the two parameters enter the condition number bound.

Remark 4.18. The extension to the three-dimensional case and other primal variables
is certainly possible, but even more technical. The definitions and notations introduced
in Section 4.2.1 can be extended to three dimensions in a straightforward way. Theo-
rem 4.14 is specific to the two-dimensional case with primal vertex dofs and has to be
extended in order to handle continuous averages and/or higher dimension.

Theorem 4.16 provides the theoretical basis for the numerical results obtained in Sec-
tion 4.3 for the two-dimensional case with only vertex primal variables. The numerical
results indicate that this bound also holds for continuous edge averages as primal
variables and for three-dimensional problems with additional interface and/or edge
averages. Although the presented proof does not cover the case of jumping diffusion
coefficients, we also observed robustness of the condition number in such cases in Sec-
tion 4.3. Note that the condition number bound obtained in Theorem 4.16 depends
on the ratio hl/hk. However, numerical results do not reproduce this behaviour, cf.,
Section 4.3.3. In [22], the more complex deluxe scaling is considered, for which it may
be possible to prove a bound, which is independent of hl/hk. We point out that the
presented analysis does not answer the dependence on the B-Spline degree p. The
numerical experiments in Section 4.3 indicate that the condition number depends on
the degree, but very moderately in a logarithmic way for two-dimensional domains.
For three-dimensional domains we observe a linear dependence. Similar results have
been obtained in [18] for the cG BDDC-IgA preconditioner, see also Section 3.4.4 for
the cG-IETI-DP method. Moreover, the condition number bound proven here is not
independent of the parameter δ in the dG penalty term in contrast to the bound
given in [52] for the FE equivalent. In the numerical experiments δ is chosen to be
(p + 1)(p + d) according to the inverse inequalities used, where d is the dimension.
Hence, δ is independent of the mesh-size h and the influence of δ on the algorithm is
implicitly contained in the experiments about the p-dependence.

4.3 Numerical Examples

In this section, we present numerical results documenting the numerical behaviour of
the implemented dG-IETI-DP algorithm for solving large-scale linear systems arising
from higher-order IgA discretizations of (2.1) in the domains illustrated in Figure 4.4(a)
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and Figure 4.4(b). The computational domain consists of 21 subdomains in both 2d
and 3d. In both cases, one side of a patch boundary has inhomogeneous Dirichlet con-
ditions, whereas all other sides have homogeneous Neumann conditions. We consider
the case of non-matching meshes, i.e., two neighbouring patches may have different
mesh-sizes hk and hl. Due to our implementation of the dG formulation, we only
consider nested meshes on the interface, i.e., the B-Spline spaces on the interfaces are
nested. However, we note that the presented algorithm does not rely on this assump-
tion. Each subdomain has a diameter of Hk and an associated mesh-size of hk. In the
following, we use the abbreviation H/h = maxkHk/hk. We consider B-Splines, where
its degree is chosen as p = 2 and p = 4. In all numerical examples, when increasing
the degree from 2 to 4, we keep the smoothness of the space, i.e., we increase the
multiplicity of the knots on the coarsest mesh. In order to solve the linear system
(4.27), a PCG algorithm with the scaled Dirichlet preconditioner (4.28) is performed.
We use a zero initial guess, and a reduction of the initial residual by a factor of 10−6 as
stopping criterion. The numerical examples illustrate the dependence of the condition
number of the IETI-DP preconditioned system on jumps in the diffusion coefficient α,
patch size H, mesh-size h and the degree p. In Section 4.3.3, we investigate the special
case of increasing hk/hl and its influence on the condition number. In all other tests
we consider a fixed ratio hk/hl. We use the C++ library G+Smo for describing the
geometry and performing the numerical tests, see also [111] and [162].

(a) 2d YETI-footprint (b) 3d YETI-footprint
(c) Pattern of jumping coeffi-
cients

Figure 4.4: Figure (a) and (b) show the computational domain, the decomposition
into patches and its initial mesh in 2d and 3d, respectively. Figure (c) presents the
pattern of the jumping diffusion coefficient.
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ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
1610 8 3.0 17 3.1 17 1.3 9 1.3 9
4706 16 4.0 19 4.2 19 1.6 11 1.6 11
15602 32 5.2 21 5.4 21 1.9 12 1.9 12
56210 64 6.5 23 6.8 23 2.4 14 2.4 14
212690 128 8.0 24 8.4 24 2.8 16 2.8 16

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
4706 8 1.3 9 1.3 9 1.7 11 1.7 12
9370 16 1.6 11 1.6 11 2.1 13 2.1 13
23402 32 1.9 12 1.9 12 2.5 15 2.5 15
70282 64 2.4 14 2.4 14 3.0 16 3.0 16
239306 128 2.8 16 2.8 16 3.5 17 3.5 18

Table 4.1: 2d example with p = 2 and p = 4, and homogeneous diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on H/h for the
preconditioned system with coefficient and stiffness scaling. Choice of primal variables:
vertex evaluation, vertex evaluation and edge averages.

4.3.1 Homogeneous Diffusion Coefficient

We first consider the case of a homogeneous diffusion coefficient, i.e., α = 1 on Ω.
The 2d results are summarized in Table 4.1, whereas the 3d results are presented
in Table 4.2. We observe that the condition number of the preconditioned system
grows logarithmically with respect to H/h. Moreover, the numerical results indicate
a dependence of the condition number on the degree p, which will be investigated in
more detail in Section 4.3.5.

4.3.2 Inhomogeneous Diffusion Coefficient

In this subsection, we investigate the case of patch-wise constant diffusion coefficient,
but with jumps across the patch interfaces. The diffusion coefficient takes values
α(k) ∈ {blue, red} := {10−4, 104}, with a jumping pattern according to Figure 4.4
(c). The 2d results are summarized in Table 4.3, and the 3d results are presented in
Table 4.4. Comparing Table 4.1 and Table 4.2 with Table 4.3 and Table 4.4, one clearly
sees the robustness with respect to jumping coefficients of the considered method and
the quasi optimal dependence of the condition number on H/h. The dependence of
the degree will again be studied in Section 4.3.5.
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ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
2800 3 49.9 44 49.9 44 1.4 9 1.4 9
9478 6 72.3 48 70.3 49 15.8 17 14.7 17
42922 12 169.1 70 165.6 69 19.8 30 18.4 29
244594 25 376.4 91 368.7 92 24.0 37 22.4 36

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
22204 8 203.1 77 199.0 79 23.3 33 21.5 34
42922 16 248.9 82 240.7 83 26.7 34 24.7 34
116110 32 506.3 104 488.1 104 31.3 42 29.1 41
443926 128 1090.1 130 1060.7 129 36.4 44 34.1 45

Table 4.2: 3d example with p = 2 and p = 4 , and homogeneous diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on H/h for the
preconditioned system with coefficient and stiffness scaling. Choice of primal variables:
vertex evaluation, vertex evaluation and edge averages.

ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
1610 8 3.8 12 4.0 12 1.4 7 1.4 7
4706 16 5.1 13 5.4 13 1.7 7 1.7 7
15602 32 6.5 15 7.1 15 2.0 8 2.1 8
56210 64 8.2 15 9.0 16 2.4 8 2.6 8
212690 128 10.1 17 11.1 18 2.9 9 3.1 9

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
4706 8 5.7 14 6.1 14 1.8 8 1.9 8
9370 16 7.0 14 7.7 15 2.1 8 2.3 8
23402 32 8.7 15 9.6 17 2.5 9 2.8 9
70282 64 10.7 18 11.8 18 3.0 9 3.3 9
239306 128 12.8 18 14.2 18 3.5 10 3.9 10

Table 4.3: 2d example with p = 2 and p = 4, and jumping diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on H/h
for the preconditioned system with coefficient and stiffness scaling. Choice of primal
variables: vertex evaluation, vertex evaluation and edge averages.
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ALG. A ALG. C
p = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs H/h κ It. κ It. κ It. κ It.
2800 8 50.3 28 57.9 25 2.1 11 2.1 11
9478 16 72.2 29 83.4 29 12.6 17 14.6 18
42922 32 176.1 43 203.7 42 15.7 22 18.2 24
244594 128 400.6 52 463.0 58 18.9 28 22.0 30

p = 4 coeff. scal. stiff. scal. coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. κ It. κ It.
22204 8 203.3 44 236.1 45 17.7 15 20.7 15
42922 16 250.2 43 290.4 42 20.5 17 23.9 17
116110 32 520.9 58 605.7 57 24.0 19 28.0 21
443926 128 1143.1 72 1331.9 80 28.0 22 32.6 22

Table 4.4: 3d example with p = 2 and p = 4, and jumping diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on H/h
for the preconditioned system with coefficient and stiffness scaling. Choice of primal
variables: vertex evaluation, vertex evaluation and edge averages and face averages.

4.3.3 Dependence on hk/hl

In this subsection, we deal with dependence of the condition number on the ratio
q := hk/hl of mesh-sizes corresponding to neighbouring patches. The initial domain
is the same as given in Figure 4.4, but without the additional refinements in certain
patches, i.e., hk/hl = 1. Then we consequently perform uniform refinement in the
considered patches and obtain hk/hl = 2r, where r is the number of refinements. In
the numerical tests, we only consider the cases α ∈ {10−4, 104} and p = 4. The results
for 2d and 3d are summarized in Table 4.5 and indicate that the condition number is
independent of the ratio hk/hl for 2d and 3d, as also predicted for FE in [52]. We note
that the increasing condition number and number of iterations come along with the
increased ratio H/h and comparing the numbers of this test with the corresponding
ones from Table 4.4 we observe an agreement. Thus, it is noteworthy that, although
in 2d the ratio H/h is increasing, the condition number stays constant.

4.3.4 Weak Scaling

Similar to Section 3.4.3 we investigate the weak scaling behaviour of the dG-IETI-DP
method. Here we fix the ratio H/h and increase the number of patches. In the follow-
ing tests, we perform a uniform splitting of the patches, i.e., by splitting them into 2d

subpatches. We choose the two- and three-dimensional YETI footprint as computa-
tional domain, see Figure 4.4. One each patch we perform one initial refinement, fix
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ALG. A ALG. C
dim = 2 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs q H/h κ It. κ It. κ It. κ It.
1816 1 2 4.9 13 5.2 14 1.6 7 1.7 7
2134 2 4 4.9 13 5.3 14 1.6 7 1.7 7
2962 4 8 4.9 13 5.5 14 1.6 7 1.8 7
5386 8 16 4.9 13 5.6 14 1.6 7 1.8 7
13306 16 32 4.9 13 5.7 14 1.6 7 1.8 7
41434 32 64 4.9 13 5.6 14 1.6 7 1.8 7

ALG. C ALG. B
dim = 3 coeff. scal. stiff. scal. coeff. scal. stiff. scal.

#dofs q H/h κ It. κ It. κ It. κ It.
9362 1 2 14.8 21 14.9 21 14.8 15 16.6 15
11902 2 4 17.7 23 22.1 24 19.5 15 28.7 17
20426 4 8 29.2 24 37.5 27 29.2 16 37.5 18
56626 8 16 52.2 26 67.2 27 52.2 17 67.2 18
345268 16 32 98.4 27 124.4 28 98.4 17 124.8 19
1758004 32 64 191.1 28 240.6 28 308.1 20 240.6 20

Table 4.5: 2d and 3d example with p = 4, and jumping diffusion coefficient. Depen-
dence of the condition number κ and the number It. of iterations on the ratio q = hk/hl
for the preconditioned system with coefficient and stiffness scaling. Choice of primal
variables: in 2d vertex evaluation, vertex evaluation and edge averages, in 3d vertex
evaluation and edge averages, vertex evaluation, edge averages and face averages.



88 CHAPTER 4. DISCONTINUOUS GALERKIN IETI-DP METHODS

2D ALG. A coeff. scal ALG. C coeff. scal
N Dofs nΠ κ It. nΠ κ It.
21 10524 82 6.7 23 106 2.3 14
84 43688 332 7.7 30 464 2.8 16
336 155920 1336 10.0 33 1936 2.8 17
1344 629024 5360 11.3 35 7904 3.1 18
5376 2526784 21472 12.6 37 31936 3.5 19

3D ALG. A coeff. scal ALG. C∗ coeff. scal
N Dofs nΠ κ It. nΠ κ It.
21 3990 160 75.3 51 176 26.1 48
168 40480 1316 395.4 175 1856 65.3 80
1344 337720 10632 - ≥200 15776 74.1 95
10752 2829200 85640 - ≥200 128006 85.4 102

Table 4.6: Weak scaling results for two- and three-dimensional computational domain
having B-Spline of degree p = 4 and jumping diffusion coefficient α ∈ {10−3, 103}.

the polynomial degree to 4 and used a homogeneous diffusion coefficient. For the ini-
tial three-dimensional geometry, we perform one additional refinement in z-direction.
Moreover, we only report the condition number and CG iterations for the coefficient
scaling, the stiffness scaling gives very similar results. We expect constant condition
numbers and number of iterations. The results are summarized in Table 4.6. For the
two-dimensional domain, we only observe a slight increase of the condition number, in
particular in case of Algorithm C. The results also indicate a similar behaviour for the
three-dimensional domain, where Algorithm A does not provide a scalable method (as
expected). For the second test, we use a variant of the Algorithm C, denoted by C∗,
having only edge averages. This reduces the number of primal variables, circumvent-
ing memory limitations. Also in this case, we observe an increasing condition number,
which seems to slowly saturate.

4.3.5 Dependence on the Degree p

In this subsection, we study the dependence of the condition number on the degree p of
the B-Spline space. There are two ways to dealing with degree elevation. One method
is to keep the smoothness of the space, i.e., the multiplicity of the knots is increased
in each step. The other way keeps the multiplicity of the knots, while increasing the
smoothness of the B-Spline. The first method retains the support of the B-Spline basis
small, with the drawback of a larger number of dofs, while the second method does it
vice versa, i.e., increasing the support of the B-Spline, while having a smaller number
of dofs. The aim of this section is to investigate the effect of the two different elevation
techniques on the condition number.
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We choose the computational domain as the 2d and 3d YETI-footprint presented in
Figure 4.4 and the diffusion coefficient is chosen to be globally constant. The results are
summarized in Table 4.7 and in Table 4.8 for the 2d and 3d domain, respectively. The
numerical results indicate a at most linear dependence of the condition number of the
preconditioned system on the B-Spline degree p. When considering the 2d domain, the
dependence on the degree seems to be even logarithmic, see Figure 4.5. One observes
a significant increase of the condition number, when increasing the degree from 2 to 3
in 3d as illustrated in Figure 4.5 (b).

Increasing the multiplicity Increasing the smoothness
ALG. C coeff. scal stiff. scal. ALG. C coeff. scal stiff. scal.

#dofs degree κ It. κ It. #dofs degree κ It. κ It.
2794 2 1.5 11 1.5 10 2794 2 1.5 11 1.5 10
8706 3 1.9 13 1.9 13 3314 3 1.8 12 1.8 12
17818 4 2.2 14 2.2 14 3876 4 2.0 13 2.0 13
30130 5 2.5 15 2.5 15 4480 5 2.1 13 2.2 14
45642 6 2.7 16 2.7 16 5126 6 2.3 14 2.3 14
64354 7 2.9 17 2.9 17 5814 7 2.4 15 2.4 15
86266 8 3.1 17 3.1 18 6544 8 2.5 15 2.5 15
111378 9 3.3 18 3.3 18 7316 9 2.6 16 2.6 16
139690 10 3.5 18 3.5 18 8130 10 2.7 16 2.7 16

Table 4.7: 2d example with fixed initial mesh and homogeneous diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on H/h for the
preconditioned system with coefficient and stiffness scaling. Choice of primal variables:
vertex evaluation and edge averages.

Increasing the multiplicity Increasing the smoothness
ALG. B coeff. scal stiff. scal. ALG. B coeff. scal stiff. scal.

#dofs degree κ It. κ It. #dofs degree κ It. κ It.
1474 2 1.7 12 1.7 12 1474 2 1.7 12 1.7 12
5472 3 9.3 29 9.9 26 3004 3 9.1 19 9.4 19
13182 4 11.0 35 12.0 34 5232 4 11.6 32 11.8 28
25804 5 15.3 42 15.8 39 8284 5 14.4 35 14.6 31
44538 6 18.5 46 18.8 45 12286 6 17.1 44 17.0 38
70584 7 21.5 51 21.7 49 17364 7 20.2 47 20.1 40

Table 4.8: 3d example with fixed initial mesh and homogeneous diffusion coefficient.
Dependence of the condition number κ and the number It. of iterations on H/h for the
preconditioned system with coefficient and stiffness scaling. Choice of primal variables:
vertex evaluation, edge averages and face averages.
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Figure 4.5: Dependence of the condition number on the B-Spline degree p for the
2d and 3d domain. We compare the influence of the considered scaling strategy and
method for increasing the degree.

4.3.6 Performance of cG-IETI-DP and dG-IETI-DPMethods

The problems were calculated on a Desktop PC with an Intel(R) Xeon(R) CPU E5-
1650 v2 @ 3.50GHz and 16 GB main memory. The LU-factorizations for the local
solvers are performed by means of the PARDISO 5.0.0 Solver Project, see [140]. In
Table 4.9, we investigate the runtime of a serial implementation and compare it with
the timings of the cG-IETI-DP algorithm. In order to compare the timings for the
continuous IETI-DP and discontinuous IETI-DP method, we use the setting in Sec-
tion 3.4. More precisely, the computational domain is the 2d example from Figure 4.4,
but with fully matching patches, i.e., no additional refinements on selected patches.
For this test we have 114398 total degrees of freedom, 1644 Lagrange multipliers, and
on each patch approximate 4600 local degrees of freedom on each patch. We select a
run with coefficient scaling and obtain a condition number of κ = 3.53 and 9 itera-
tions. We observe from Table 4.9 that the dG-IETI-DP method shows a very similar
performance. The increased number of primal variables and the extended version of
the stiffness matrix Ke leads to a slightly larger runtime.

4.4 Segmentation Crimes

In all other sections, we consider multi-patch geometries, which are geometrically
matching, i.e., the interfaces of adjacent patches are identical. In this section, we
consider domains having small gaps and overlaps at the patch interfaces. To solve
PDEs on such domains, we use a dG approach and construct appropriate numerical
fluxes to provide the information transfer across the gaps and overlaps. The case of
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Wall-clock time relative time in %
cG dG cG dG

Preparing the bookkeeping 0.012 s 0.02 s 0.06 0.11
Assembling all patch-local K(k) 6.4 s 6.8 s 35.56 35.79
Partitioning w.r.t. B and I 0.085 s 0.12 s 0.48 0.63
Assembling C 0.017 s 0.034 s 0.09 0.18
LU-fact. of K(k)

II 2.5 s 2.5 s 13.89 13.16

LU-fact. of

[
K(k) C(k)T

C(k) 0

]
3.9 s 4 s 21.67 21.05

Assembling and LU-fact. of SΠΠ 0.78 s 1.1 s 4.33 5.79
Assemble rhs. 0.13 s 0.13 s 0.72 0.68
Total assembling 14 s 15 s 77.78 78.95
One PCG iteration 0.34 s 0.36 s - -
Solving the system 3.4 s 3.6 s 18.89 18.95
Calculating the solution u 0.33 s 0.33 s 1.83 1.74
Total spent time 18 s 19 s 100.00 100.00

Table 4.9: Serial computation times of the 2d example with coefficient scaling and
Algorithm C. Column 2 and 3 present the absolute spent time, whereas column 4 and
5 present the relative one for the cG-IETI-DP and dG-IETI-DP method.

overlaps is theoretically more demanding, due to the presence of possibly two different
diffusion coefficients at the overlapping region, see [100] and [98].

This sections gives an overview of the results established in [97], [99], [98] and [100].
We mention, that the topic of this thesis is the development of solvers for systems
arising from IgA of diffusion problems. Therefore, in this section, we focus on the
application of IETI-DP methods to such kind of problems. Nevertheless, we give a
short introduction to the construction of appropriate dG-schemes. For the simplicity
of the presentation, we only give a very brief overview of the construction of dG-
schemes for overlapping regions. In order to prevent lengthy formulas and to keep the
presentation of this section simple, we will use the notation ui for the restriction of u
to patch Ω(i) instead of u(i). Similarly, we use ρi for the diffusion coefficient ρ restricted
to patch Ω(i). For simplicity, we only consider homogeneous Dirichlet conditions.

4.4.1 Motivation and Setup

As already mentioned in the introduction, a CAD system provides the description of
the computational domain only via its boundary representation. In order to perform
IgA, it is necessary to get a volume representation of the geometry. This procedure
is called volume segmentation, and is quite complicated and involved, see, e.g., [110],
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Figure 4.6: (a) Illustration of a decomposition with matching interfaces, (b) occurrence
of gaps and overlaps.

[173], [179], [174] and [106]. During this procedure, the domain is cut in such a way
that the created pieces (subdomains) are topologically equivalent to cubes. After
the calculation of the corresponding control points, each of those subdomains is then
parametrized via splines giving a volume representation. The collection of all this
volume patches then forms the resulting multi-patch geometry.

However, in certain cases, it is possible that non-conforming parametrizations of the
patch interfaces occur, this means that the patch interfaces are not identical. More
precisely, during the construction of the parametrization of a patch, lets say Ω

(i)
∗ , the

control points which are related to an interface may have not appropriately been de-
termined with the corresponding control points of the adjacent patch Ω

(j)
∗ for i 6= j.

The result is a decomposition of Ω in patches Ω
(i)
∗ , where small gap and/or over-

lapping regions can occur at the interfaces, see Figure 4.6(b). We refer to such de-
compositions as non-matching interface parametrizations or segmentation crimes. For
the analysis of the method, we assume that there exits so-called physical patches
Ω(i), i = 1, . . . , N , which form a non-overlapping decomposition of Ω. The correspond-
ing interfaces F (ij) := Ω

(i) ∩Ω
(j) are called physical interfaces, see Figure 4.6(a).

Gap Regions

In this section, we describe a gap region which is located between two patches. Let
Ω

(1)
∗ and Ω

(2)
∗ be two adjacent patches with the corresponding non-matching interface

parametrizations G(1)
∗ : Ω̂ → Ω

(1)
∗ and G

(2)
∗ : Ω̂ → Ω

(2)
∗ . Further, let Ωg12 be the

gap region such that Ωg12 ⊂ Ω and |∂Ωg12 ∩ ∂Ω| = 0. Based on our assumption, we
have

Ω
(1)

∗ ∪ Ω
(2)

∗ ∪ Ωg12 = Ω
(1) ∪ Ω

(2)
.
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For simplicity of the presentation, we assume that the face Fg2 coincides with the
physical interface F (12). This implies that Ω

(2)
∗ = Ω(2). An illustration is given in

Figure 4.6(b). Without loss of generality, we consider the boundary of the gap region
as ∂Ωg12 = Fg1 ∪Fg2, with Fgi ⊂ Ω

(i)
∗ , i = 1, 2. Moreover, we assume that the face Fg1

can be described as the set of points x = (x1, x2, x3) satisfying

0 ≤ x1 ≤Mx1 , 0 ≤ x2 ≤Mx2 , x3 = ζg(x1, x2), (4.58)

where Mx1 and Mx2 are real numbers, and ζg(x1, x2) is a B-Spline function of the
same degree as the mapping G

(1)
∗ . More precisely, the face Fg1 is the image of a

face of ∂Ω̂ under the mapping G(1)
∗ . Next, we construct a parametrization of Fg1 as

Gg21 : Fg2 → Fg1 defined as

xg2 ∈ Fg2 → Gg21(xg2) := xg1 ∈ Fg1, with Gg21(xg2) = xg2 + ζg(xg2)nFg2 , (4.59)

where nFg2 is the unit normal vector on Fg2, and ζg is as in (4.58).

We will couple the resulting discrete problems in Ω
(1)
∗ and Ω

(2)
∗ using dG techniques, i.e.,

by introducing appropriate numerical fluxes on Fg1 and Fg2. For their construction, we
need to assign the points located on Fg2 to the diametrically opposite points located
on Fg1, described by the mapping Gg21. We are only interested in small gap regions,
cf. (4.61), and, thereby, if nFg1 is the unit normal vector on Fg1, we can suppose that
nFg2 ≈ −nFg1 . Consequently, we can define the mapping Gg12 : Fg1 → Fg2 to be

Gg12(xg1) = xg2, with Gg21(xg2) = xg1. (4.60)

We note that both parametrizations Gg21 in (4.59) and Gg12 in (4.60) have been con-
structed under the consideration that one side is planar and nFg2 ≈ −nFg1 . In Section
4.4.3, we present numerical tests where all the faces of the gap and overlapping regions
are curved surfaces. In order to quantify the size of the gap, we introduce the gap
width as follows

dg = max
xg2∈Fg2

|xg2 −Gg21(xg2)|.

We focus on gap regions whose width decreases polynomially in h, that is,

dg ≤Chλ, with some λ ≥ 1. (4.61)

Overlapping Regions

We now describe the case of having an overlapping region at the interface. For simplic-
ity of the presentation, we assume that the overlapping region is formed by involving
two patches. Due to an incorrect segmentation procedure, we obtain two mappings,
lets say G(2)

∗ : Ω̂ → Ω
(2)
∗ and G

(3)
∗ : Ω̂ → Ω

(3)
∗ , which cannot exactly parametrize the
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two physical patches Ω(2) and Ω(3). This leads to the corresponding “incorrect” patches
Ω

(2)
∗ and Ω

(3)
∗ . The overlapping region is then given by Ωo23 = Ω

(2)
∗ ∩ Ω

(3)
∗ . We denote

the interior boundary faces by Foi = ∂Ω
(i)
∗ ∩ Ω

(j)
∗ , with i, j = 2, 3 and i 6= j, and their

unit normal vector by nFoi . An illustration is given in Figure 4.6. Having analogous
assumptions as in the case of gap regions and following a similar argumentation, we
can introduce the corresponding mappings Go23 and Go32, and define the width of the
overlapping region as

do = max
xo2∈Fo2

|xo2 −Go23(xo2)|.

We focus on overlapping regions whose distance decreases polynomially in h, i.e.,

do ≤Chλ, with some λ ≥ 1. (4.62)

Remark 4.19. We note that the mappings Gg12, Gg21, Go23 and Go32 are introduced
and used only for deriving the discretization error analysis. They are not used in the
computation of the entries of the system matrix of the discrete dG-IgA scheme

4.4.2 Discrete dG-Scheme

In this section, we formulate the discrete dG-scheme for domains with small gap and
overlapping regions located the patch interfaces. As already mentioned in the begin-
ning of Section 4.4, we will only briefly comment on the construction of such schemes
in case of overlaps.

Gap Regions

First, we need some assumptions on the smoothness of the exact solution. Similar as
in Theorem 2.19, we make the following assumption.

Assumption 5. We assume that the solution u of (2.2) belongs to the space V :=
H1(Ω) ∩H l(TH(Ω)) with some l ≥ 2, where H l(TH(Ω)) := {u ∈ L2(Ω) : ui := u|Ω(i) ∈
H l(Ω(i)), for i = 1, 2}.

For a u ∈ V , which solves (2.2), we can deduce the following interface conditions

JuK := u1 − u2 = 0 on F (12),

Jρ∇uK · nF (12) := (ρ1∇u1 − ρ2∇u2) · nF (12) = 0 on F (12).
(4.63)

By Assumption 5, we have that ui ∈ H l(Ω
(i)
∗ ), where l ≥ 2, i = 1, 2, and the following

interface conditions for the solution u on the two faces of ∂Ωg12,

JuK
∣∣
Fgi

= 0 and Jρ∇uK · nFgi
∣∣
Fgi

= 0 with i = 1, 2. (4.64)
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The idea for deriving dG-IgA schemes on multi-patch domains with gap regions is to
approximate the normal fluxes on ∂Ωg12 by means of known interior values. More
precisely, the normal fluxes are replaced by Taylor expansions. They help us to con-
struct appropriate numerical fluxes across opposite faces at ∂Ωg12. Finally, these fluxes
play the role of a bridge for coupling the discrete patch-wise problems. We note that
for matching interfaces, these numerical fluxes reduce to the classical dG numerical
fluxes. For completeness, we present the Taylor expansions with integral remainder
term

u(y) =u(x) +∇u(x) · (y − x) +R2uy, (4.65)

where R2uy is the second-order remainder term defined by

R2uy =
∑
|α|=2

(y − x)α
2

α!

∫ 1

0

sDαu(y + s(x− y)) ds.

By simple computations, one obtains the following identities from (4.65):

∇u(y)(y − x) =∇u(x) · (y − x) +R2ux +R2uy,

−
(
u(x)− u(y)

)
=∇u(x) · (y − x) +R2uy.

(4.66)

Let xg2 ∈ Fg2 and let xg1 ∈ Fg1 be two opposite points such that xg1 = Gg21(xg2)
and xg2 = Gg12(xg1). Denoting rg1 = xg1 − xg2 and having rg2 = −rg1, we obtain that
the normals are given by nFg1 = rg1/|rg1| and nFg2 = rg2/|rg2|. As usual, we denote
the average of the diffusion coefficient across by {ρ} := (ρ1 + ρ2)/2 . By considering
xg2 and xg1 to play the role of x and y in (4.66) and using (4.64), we can derive the
following expressions for the normal fluxes and jump terms of u on ∂Ωg12.

∇ug12(xg2) · nFg2 = ∇u1(xg1) · nFg2 −
1

|rg1|
(
R2uxg2 +R2uxg1)

)
,

−1

h

(
u2(xg2)− u1(xg1)

)
=
|rg1|
h
∇ug12(xg2) · nFg2 +

1

h
R2uxg1 .

(4.67)

Now, following the dG framework, we multiply (2.1) by a φh ∈ Vh, apply integration
by parts and replace the normal fluxes on ∂Ωg12 by those, given in (4.67). We arrive
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at the variational formulation

2∑
i=1

∫
Ω

(i)
∗

ρi∇u · ∇φh dx−
∫
∂Ω

(i)
∗ ∩∂Ω

ρi∇u · n∂Ω
(i)
∗
φh dσ

−
∫
Fg2

(ρ2

2
∇u2 +

ρ1

2
∇u1

)
· nFg2φh −

{ρ}
h

(
u2 − u1

)
φh dσ

−
∫
Fg1

(ρ1

2
∇u1 +

ρ2

2
∇u2

)
· nFg1φh −

{ρ}
h

(
u1 − u2

)
φh dσ

+

∫
Fg2

( ρg2
2|rg2|

(
R2uxg1 +R2uxg2

)
− {ρ}

h

(
|rg2|∇ug2 · nFg2 +R2uxg2

))
φh dσ

+

∫
Fg1

( ρg1
2|rg1|

(
R2uxg1 +R2uxg2

)
− {ρ}

h

(
|rg1|∇ug1 · nFg1 +R2uxg1

))
φh dσ

=

∫
Ω\Ωg12

fφh dx, for all φh ∈ Vh. (4.68)

Remark 4.20. The spline space Vh is defined via the geometrical mappings G(i)
∗ .

Clearly, (4.68) cannot be directly implemented due to the presence of the Taylor
residuals. For the final dG-IgA formulation (4.70), see below, the Taylor residuals
we will be omitted.

For all v ∈ V ∗h := V + Vh we introduce the dG-norm ‖.‖dG

‖v‖2
dG =

2∑
i=1

(
ρi‖∇vi‖2

L2(Ω
(i)
∗ )

+
ρi
h
‖vi‖2

L2(∂Ω
(i)
∗ ∩∂Ω)

+
∑

Fgi⊂∂Ω
(i)
∗

{ρ}
h
‖vi‖2

L2(Fgi)

)
. (4.69)

Recalling the dG-scheme (4.68), we define the bilinear form BΩ∗(·, ·) : V ∗h × Vh → R,
and the linear functional Fh : Vh → R by the relation

BΩ∗(u, φh) =
2∑
i=1

(∫
Ω

(i)
∗

ρi∇ui · ∇φh dx−
∫
∂Ω

(i)
∗ ∩∂Ω

ρi∇ui · n∂Ω
(i)
∗
φh dσ (4.70)

−
∑

Fgj⊂∂Ω
(i)
∗

∫
Fgj

(ρi
2
∇ui +

ρj
2
∇uj

)
· nFgjφh −

η{ρ}
h

(
ui − uj

)
φh dσ

)

Fh(φh) =
2∑
i=1

∫
Ω

(i)
∗

fφh dx,

where η > 0 is a parameter that will be defined in order to achieve the coercivity of the
resulting dG bilinear form on the IgA space Vh. Hence, by incorporating homogeneous
Dirichlet conditions in a weak sense, we introduce the bilinear form Bh(·, ·) : Vh×Vh →
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R as follows

Bh(uh, φh) = BΩ∗(uh, φh) +
2∑
i=1

ηρi
h

∫
∂Ω

(i)
∗ ∩∂Ω

uhφh dσ (4.71)

Finally, the dG-IgA scheme, which we are going to solve, reads as follows: find uh ∈ Vh
such that

Bh(uh, φh) = Fh(φh), for all φh ∈ Vh. (4.72)

Lemma 4.21. The bilinear form Bh(·, ·) in (4.71) is elliptic on Vh, i.e., there is a
positive constant Cm such that the estimate

Bh(vh, vh) ≥ Cm‖vh‖2
dG, (4.73)

hold for all vh ∈ Vh provided that η is sufficiently large.

Proof. See Lemma 3.3 in [97].

The ellipticity of the bilinear form Bh(·, ·) already yields that the discrete problem
(4.72) has a unique solution.

The error analysis uses a variation of Strang’s Lemma, and for sufficiently small dg,
i.e., dg ≤ Chλ with λ ≥ p − 1/2, it is proven that the method has optimal approxi-
mation properties. For a detailed discussion about constructing dG-IgA schemes for
decompositions having gap regions and their corresponding error analysis, we refer to
[97] and [99]. We conclude by presenting the main discretization error bound.

Theorem 4.22. Let Assumption 5 hold, let u be the solution of problem (2.2), let uh
be the corresponding dG-IgA solution of problem (4.72), and let dg ≤ Chλ with λ ≥ 1.
Then the a-priori error estimate

‖u− uh‖dG . hr
( 2∑
i=1

‖u‖
Hl(Ω

(i)
∗ )

+Kg
)
, (4.74)

holds, where r = min(s, β) with s = min(p+ 1, l)− 1 and β = λ− 1
2
, and Kg depends

on the Taylor residuals appearing in (4.68).

Proof. See Theorem 4.3 in [97].

Remark 4.23. The estimate (4.74) is referred to the case where the maximum width
dg is of order O(hλ). If the width dg is fixed, i.e., is not decreased as we refine the
meshes, we are in the case where λ = 0. Following the lines of the proof, we can infer
that the estimate (4.74) will take the form

‖u− uh‖dG . hs
2∑
i=1

‖u‖
Hl(Ω

(i)
∗ )

+ dg h
− 1

2 Kg, (4.75)

where s = min(p+ 1, l)− 1 and Kg is as in Theorem 4.22.
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Overlapping Regions

The case of overlapping regions is more involved and very technical due to the presence
of possibly different diffusion coefficients on the overlapping region. This leads to the
co-existence of two different numerical solutions on the overlap. Therefore, we will
only give a brief overview of this topic. For a more detailed discussion, we refer to
[100].

The idea is to introduce local (patch-wise) auxiliary variational problems, which are
compatible with the overlapping nature of the multi-patch representation of Ω. The
solutions are denoted by u∗2 and u∗3, and we identify their pair (u∗2, u

∗
3) by u∗, which

is equal to u∗i on Ω
(i)
∗ for i = 2, 3. On each Ω

(i)
∗ , i = 1, 2, we consider the following

auxiliary problem

(P )


−div(ρi∇u∗i ) = f, inΩ

(i)
∗ ,

u∗i = 0 on ∂Ω
(i)
∗ ∩ ∂Ω,

u∗i = u onFoi.

Note that the solution u of (2.1) does not satisfy in general (P) on Ω
(3)
∗ . This implies

that an additional consistency error between the solution u∗ and u has to be taken
into account.

In order to derive our dG-IgA scheme, we consider the problem (P ) on both domains
Ω

(2)
∗ and Ω

(3)
∗ , multiply them by a testfunction φh ∈ Vh and apply integration by parts.

We follow the same ideas as in the case of gap regions by using Taylor expansions
to provide approximations of the numerical fluxes on Fo2 and Fo3. This allows us to
formulate a variational formulation for u∗ including Taylor residual terms, similar as
in the case of gaps, cf. (4.68). Analogously, we can derive the following variational
problem for u∗h: find u∗h ∈ Vh such that

Bh(u
∗
h, φh) = Fh(φh), for all φh ∈ Vh, (4.76)

where the bilinear form Bh(·, ·) : Vh × Vh → R and the linear functional Fh : Vh → R
are defined by

Bh(u
∗
h, φh) = BΩ∗(u

∗
h, φh) +

3∑
i=2

ηρi
h

∫
∂Ω

(i)
∗ ∩∂Ω

u∗hφh dσ

Fh(φh) =
3∑
i=2

∫
Ω

(i)
∗

fφh dx.



4.4. SEGMENTATION CRIMES 99

with

BΩ∗(u
∗, φh) =

3∑
i=2

(∫
Ω

(i)
∗

ρi∇u∗i · ∇φh dx−
∫
∂Ω

(i)
∗ ∩∂Ω

ρi∇u∗i · n∂Ω
(i)
∗
φh dσ

−
∑

Foj⊂∂Ω
(i)
∗

∫
Foj

(ρi
2
∇u∗i +

ρj
2
∇u∗j

)
· nFojφh −

η{ρ}
h

(
u∗i − u∗j

)
φh dσ

)
.

It is possible to show coercivity of Bh(u
∗
h, φh), see Lemma 2 in [100]. However, we can

not directly infer that u∗h can approximate the solution u of the original problem in an
optimal way. By means of the triangle inequality, the discretization error ‖u− u∗h‖dG
is split as follows

‖u− u∗h‖dG ≤ ‖u∗ − u∗h‖dG + ‖u− u∗‖dG, (4.77)

where each term has to be analyzed separately. Finally, in [100] it is shown, that both
parts of the right hand side of (4.77) can be bounded in terms of the mesh size h,
which leads to the following discretization error estimate.

Theorem 4.24. Let u be the solution of problem (2.2), let u∗h be the dG-IgA solution
of (4.76), and let do ≤ Chλ with λ ≥ 1. Then, under additional regularity assumptions
on u and u∗, the error estimate

‖u− u∗h‖dG . hr
( 3∑
i=2

(
‖u‖

Hl(Ω
(i)
∗ )

+ ‖u∗i ‖Hl(Ω
(i)
∗ )

)
+Ko

)
, (4.78)

holds, where r = min(s, β) with s = min(p+ 1, l)− 1 and β = λ− 1
2
, and Ko depends

on the Taylor residuals of u and u∗, and on f .

Proof. See Theorem 2 in [100].

Remark 4.25. According to Remark 4.23, we obtain for a fixed size of the overlapping
region do = O(1) the following bound

‖u− u∗h‖dG . hs
3∑
i=2

(
‖u‖

Hl(Ω
(i)
∗ )

+ ‖u∗i ‖Hl(Ω
(i)
∗ )

)
+ do h

− 1
2 Ko,

where s = min(p+ 1, l)− 1 and Ko as in Theorem 4.24.

4.4.3 Numerical Examples

In this section, we perform several numerical tests with different shapes of gap and
overlapping regions as well as combinations with inhomogeneous diffusion coefficients
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B-Spline degree p ≥ 2
Smooth solutions, u ∈ H l≥p+1(Ω)

dM = hλ λ = 1 λ = 2 λ = 2.5 λ = 3
β := 0.5 1.5 2 2.5
s := p p p p
r := 0.5 1.5 min(p, 2) min(p, 2.5)

Table 4.10: The values of the predicted order r of the estimate (4.74) and (4.78).

for two- and three-dimensional domains. We investigate the order of accuracy of the
dG-IgA scheme proposed in (4.72) and (4.76). We compare the error convergence rates
versus the grid size h for several gap/overlapping distances dM := max(do, dg) = hλ,
with λ ∈ {1, 2, 2.5, 3}. Every example has been solved applying several mesh refine-
ment steps with hi, hi+1, . . . , satisfying Assumption 2. Moreover, the dG techniques
allow us to consider non-matching meshes. If we keep a constant linear relation be-
tween the sizes of the different meshes, the approximation properties of the method
are not affected, see [148]. The numerical convergence rates r have been computed
by the ratio r = ln(ei/ei+1)/ ln(hi/hi+1), i = 1, 2, . . ., where ei := ‖u − uh‖dG is the
error. In order to have a unified presentation, we will also use uh instead of u∗h for the
dG-IgA solution in case of overlaps. We use highly smooth solutions on each patch,
i.e., p + 1 ≤ l, and therefore the order s in (4.74) and (4.78) becomes s = p. The
predicted values of power β, the order s and the order r for several values of λ are
displayed in Table 4.10. All tests have been performed in G+SMo.

The gap and overlapping regions are artificially created by moving the control points,
which are related to the interfaces F (ij), in the direction of nF (ij) or of −nF (ij) . This
allows us to control the width of the gap or overlapping region by just moving the
corresponding control points.

In order to solve the resulting linear system, we use the dG-IETI-DP method, that is
described in Section 4.1, as a fast and robust solver. The derived dG-formulation fits
perfectly in the framework of the dG-IETI-DP method. We use the conjugate gradi-
ent method for solving (4.27) preconditioned with the scaled Dirichlet preconditioner
(4.28). We start with zero initial guess and iterate until we reach a reduction of the
initial residual in the `2-norm by a factor 10−10. We use such a high accuracy only
for studying the convergence behaviour of the dG-IETI-DP method. Of course, in
practice, the stopping criterion is adapted to the discretization error.

Two-Dimensional Numerical Examples

Example 1: Uniform Diffusion Coefficient ρi = 1, i = 1, . . . , N . The first
numerical example is a simple test case demonstrating the applicability of the pro-
posed technique for constructing dG-IgA schemes on decompositions including gaps
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and overlaps with general shape. The domain Ω with the N = 21 subdomains Ω
(i)
∗ and

the initial mesh are shown in Figure 4.7(a). We note that we consider non-matching
meshes across the interfaces. The Dirichlet boundary condition and the right-hand side
f are determined by the smooth exact solution u(x, y) = sin(π(x + 0.4)/6) sin(π(y +
0.3)/3) + x+ y. In this example, we consider a homogeneous diffusion coefficient, i.e.,
ρi = 1 for all Ω

(i)
∗ , i = 1, . . . , N .

We compute convergence rates for the following four different values of λ ∈ {1, 2, 2.5, 3}.
The width of the gap and overlapping region is derived according to hλ. Since we are
using B-Splines of degree two we expect optimal convergence rates for λ = 2.5 and
λ = 3, see Table 4.10. The results are in very good agreement with the theoretically
predicted estimates given in Table 4.10. We observe optimal rates for the cases where
λ ≥ 2.5. The rates are visualized in Figure 4.7(b).

As a second test, we solve the problem considering gap and overlapping regions with
fixed width dM = 0.004, cf., Remark 4.23 and Remark 4.25. We start by solving the
problem on coarse meshes with h2 > dMh

− 1
2 , then we continue to use finer meshes and

finally we solve the problem on meshes with grid size h2 < dMh
− 1

2 . The convergence
rates are shown in Figure 4.7(c). For the first mesh levels, we obtain the expected
optimal convergence rates, since the error coming from the approximation properties of
the B-Spline space dominates the approximation error coming from the approximation
of the normal fluxes at the interfaces. On the finer levels, where h2 ∼ dMh

− 1
2 , the rates

are gradually reduced and get closer to zero, because the whole discretization error
is not further decreasing as we refine the mesh. As we move into the most refined
meshes, the error related to the approximation of B-Splines is negligible compared to
the error related to the approximation of the fluxes on the interface. This should yield
the rate −0.5. In the numerical computations, this fact is depicted in the negative rate
r = −0.48 that we have found on the last level of refinement in Figure 4.8(c).

The dG-IETI-DP method performs very well. The condition number κ and CG iter-
ations (It.) are summarized in Table 4.11 for the case dM = h with coefficient and
stiffness scaling. We observe the quasi-optimal behaviour of the condition number
with respect to h. Moreover, the existence of gaps and overlaps does not affect the
condition number, cf. Theorem 4.16. Furthermore, both scalings give nearly identical
results.

Example 2: Different Diffusion Coefficient. In the second example, we study
the case of having smooth solutions on each Ω(i) but discontinuous coefficients across
the interfaces. We choose ρi ∈ {1, 3π

4
≈ 2.35, 104} according to the pattern in Fig-

ure 4.8(b). We consider a square build by a 3×3 grid of patches, giving in total N = 9

patches. The domain Ω with its patches Ω
(i)
∗ and the solution after one refinement is
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ALG. A ALG. C
coefficient scal. stiffness scal. coefficient scal. stiffness scal.

# dofs H/h κ It. κ It. κ It. κ It.
654 4 1.6 10 1.6 10 1.2 7 1.2 7
1616 8 2.0 12 2.0 11 1.3 8 1.3 8
4716 16 2.4 13 2.5 13 1.5 10 1.5 10
15620 32 3.0 14 3.0 15 1.8 11 1.8 11
56244 64 3.5 15 3.7 16 2.2 12 2.2 12
212756 128 4.1 17 4.6 18 2.6 14 2.7 14
826836 256 4.8 18 5.9 21 3.1 15 3.2 17

Table 4.11: Example 1: Dependence of the condition number κ and the number
It. of iterations on H/h for the preconditioned system with coefficient and stiffness
scaling. Choice of primal variables: vertex evaluation (left), vertex evaluation and
edge averages (right).
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Figure 4.7: Example 1: (a) The patches Ω
(i)
∗ with the initial mesh. (b) The conver-

gence rates for the different values of λ. (c) The convergence rates for fixed gap and
overlapping widths, dM = 0.004.

presented in Figure 4.8(a). The exact solution is given by

u(x, y) =


exp(− sin(3πx)) sin(7πy

2
) if x ∈ [0, 1]

((2x2 − 1) + (x− 1)2(x− 2)γ) sin(7πy
2

) if x ∈ (1, 2]

7 exp(− cos(π(x+ 1)/2) sin(7πy
2

) if x ∈ (2, 3],

(4.79)

where γ = 14 · 104 − 8. The boundary conditions and the source function f are
determined by (4.79). Note that in this test case, we have JuK|F = 0 as well as Jρ∇uK|F ·
nF = 0 for the normal flux on the interfaces. The problem has been solved on several
meshes following a sequential refinement process, where we set dM = hλ, with λ ∈
{1, 2, 3, 3.5, 4}. For the numerical tests, we use B-Splines of the degree p = 3. Hence,
we expect optimal rates for λ = 3.5 and λ = 4. The computed rates are presented in
Figure 4.8(c). By this example, we numerically observe the same convergence rates for
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Figure 4.8: Example 2: (a) The contours of uh on the subdomains Ω(i) with dg = 0.06.
(b) Pattern of diffusion coefficients ρi. (c) The convergence rates for the 5 choices of
λ.

diffusion problems with discontinuous coefficient on decompositions having gaps and
overlapping regions.

Moreover, the dG-IETI-DP method seems to be robust with respect to jumping dif-
fusion coefficients in the presence of complicated gaps and overlaps. The condition
number κ and CG iterations (It.) are summarized in Table 4.12 for the case dM = h
using coefficient and stiffness scaling. As in the previous example, we observe the ex-
pected quasi-optimal dependence of the condition number on H/h. For this domain,
the usage of more primal variables brings a significant advantage, see column ALG. C
in Table 4.12.

ALG. A ALG. C
coefficient scal. stiffness scal. coefficient scal. stiffness scal.

# dofs H/h κ It. κ It. κ It. κ It.
788 4 3.9 11 3.9 11 1.6 8 1.6 8
1452 8 3.8 11 3.8 11 1.6 8 1.6 9
3356 16 4.3 12 4.4 12 1.7 9 1.7 10
9468 32 5.1 13 5.3 15 2.0 10 2.0 11
30908 64 6.0 15 6.5 16 2.3 11 2.3 12
110652 128 7.1 16 8.3 17 2.6 12 2.7 13

Table 4.12: Example 2: Dependence of the condition number (κ) and the number CG
iterations (It.) on H/h for the preconditioned system with coefficient and stiffness
scaling. Choice of primal variables: vertex evaluation (left), vertex evaluation and
edge averages (right).

Example 3: Gap-Overlap on the same Interface. In this test, we apply
the proposed method to decompositions having a more complex gap and overlapping
region. The domain is given by 4 patches with non-matching meshes, where we arti-
ficially created both gap and overlapping region on one of the interfaces as depicted
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in Figure 4.9(a). This region is located at the interface between Ω(2) and Ω(3) at
x = 0. We note that the gap and the overlap are not separated by patches as in the
previous examples. In addition, we consider inhomogeneous diffusion coefficients, i.e.,
ρ1 = ρ2 = 3π and ρ3 = ρ4 = 3. The exact solution of the problem is given by

u(x, y) =

{
sin(π(3x+ y)) if (x, y) ∈ Ω(1),Ω(2),

sin(π(3πx+ y)) if (x, y) ∈ Ω(3),Ω(4).
(4.80)

The source function f and uD are manufactured by the exact solution. We mention
that the interface conditions JuK|F = 0 and Jρ∇uK|F · nF = 0 hold.

We have computed the convergence rates for varying size dM = hλ for λ = 1, 2, 2.5
and λ = 3. In Figure 4.9(b), we plot the contours of u on the domains Ω

(1)
∗ , . . . ,Ω

(4)
∗ .

In Figure 4.9(c), we present the obtained convergence rates. We observe that the
convergent rates for all different cases of λ confirm the theoretically predicted values,
see Table 4.10. The computational rates attain the optimal value r = 2 for λ = 2.5
and λ = 3, which is in agreement with the other examples.

The dG-IETI-DP method also performs very well in this case. Since we have only a
small number of interface dofs, we get a quite small condition number and iteration
count, see Table 4.13. However, due to having only few interface dofs, the usage of
additional face averages as primal variables does not offer any significant advantage.

ALG. A ALG. C
coefficient scal. stiffness scal. coefficient scal. stiffness scal.

# dofs H/h κ It. κ It. κ It. κ It.
184 2 1.1 4 1.1 5 1.1 4 1.1 4
460 4 1.1 4 1.1 5 1.1 5 1.1 5
1372 8 1.1 5 1.2 6 1.1 5 1.2 6
4636 16 1.2 5 1.3 6 1.2 5 1.3 6
16924 32 1.2 5 1.4 7 1.2 6 1.4 7
64540 64 1.2 5 1.9 9 1.2 6 1.9 9
251932 128 1.3 5 2.8 11 1.3 6 2.8 11

Table 4.13: Example 3, 2d example with inhomogeneous diffusion coefficient on a
domain with a complicated interface. Dependence of the condition number (κ) and the
number CG iterations (It.) on H/h for the preconditioned system with coefficient and
stiffness scaling. Choice of primal variables: vertex evaluation (left), vertex evaluation
and edge averages (right).
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Figure 4.9: Example 3: (a) The 4 patches of the domain with its initial mesh and
the gap and overlap region with dg = h. (b) The contours of u on Ω on the domain
without gap. (c) Convergence rates r for the 4 values of λ.

Three-Dimensional Numerical Examples

In the three-dimensional tests, the domain Ω has been constructed by a straight pro-
longation to the z-direction of the two-dimensional domains of Figure 4.7(a) and Fig-
ure 4.9(a). However, in contrast to the two-dimensional case, we start with match-
ing meshes, as depicted in Figure 4.10(a) and Figure 4.11(a). The knot vector in
z-direction is simply Ξ3

i = {0, 0, 0, 0.5, 1, 1, 1} with i = 1, . . . , N . The B-Spline
parametrizations of these domains are constructed by adding a third component to
the control points with the following values {0, 0.5, 1}. Again, the gap and overlapping
regions are artificially constructed by moving only the interior control points located at
the interface into the normal direction nF of the related interfaces F . Due to the fact
that the gap and overlap has to be inside of the domain, we have to provide cuts though
the domain in order to visualize them, cf. Figure 4.10(b) and Figure 4.11(b).

Example 4: 3d Test with ρi = 1 for i = 1, . . . , N. The computational domain is
chosen as the domain from Example 1, extended to z-dimension as described above.
The exact solution is given by u(x, y, z) = sin(π(x+ 0.4)) sin(2π(y+ 0.3)) sin(0.2π(z+
0.6)) with homogeneous diffusion coefficient ρi = 1 for i = 1, . . . N . The set up of the
problem is illustrated in Figure 4.10. In Figure 4.10(a), we present the domain Ω with
its N = 21 patches and the initial mesh. We use matching grids across the interface.
In Figure 4.10(b), we plot the contours of the solution uh resulting from the solution
of the problem in case of having a gap and overlapping widths such that dM = 0.5.
Also, in Figure 4.10(b), we see the shape of the gaps as it appears on an oblique cut
of the domain Ω. We note that at the interfaces in Figure 4.10(b) where no gap is
visible, are overlapping regions, cf. Figure 4.7(a).

We have computed the convergence rates for four different values λ ∈ {1, 2, 2.5, 3}.
The results of the computed rates are plotted in Figure 4.10(c). We observe that the
obtained rates are in agreement with the convergent rates predicted by the theory, see
Table 4.10. As already observed in Section 3.4 and Section 4.3, the condition number
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Figure 4.10: Example 4, Ω ⊂ R3: (a) The multi-patch system with initial mesh. (b)
The contours of uh computed on Ω \ Ωg with dg = 0.05. (c) Convergence rates r for
the three values of λ.

and CG iterations increases when having three-dimensional domains. The same be-
haviour can be observed here, although the condition number stays quite small, see
Table 4.14. Moreover, we observe that the stiffness scaling provides better results
than the coefficient scaling. For this example, it is not beneficial to use additional face
averages as primal variable. Both algorithms give identical results.

ALG. C ALG. B
coefficient scal. stiffness scal. coefficient scal. stiffness scal.

# dofs H/h κ It. κ It. κ It. κ It.
1488 2 1.2 10 1.1 10 1.2 10 1.1 10
5508 3 7.8 26 4.4 22 7.8 26 4.4 22
25908 7 10.9 32 6.3 26 10.9 32 6.3 26
149748 15 13.5 36 8.1 30 13.5 36 8.1 30
998388 31 16.3 40 10.2 34 16.3 40 10.2 34

Table 4.14: Example 4, 3d example. Dependence of the condition number (κ) and
the number CG iterations (It.) on H/h for the preconditioned system with coefficient
and stiffness scaling. Choice of primal variables: vertex evaluation and edge averages
(left), vertex evaluation, edge and face averages (right).

Example 5: 3d Gap-Overlap Region on one Interface. For the last example,
we choose the domain from Example 3 and extend it towards the z-direction with
matching grids. As in Example 3, we have a gap and an overlap simultaneously on
an interface. This fact is visualized in Figure 4.9(b). We consider a manufactured
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problem, where the solution is given by

u(x, y, z) =

{
u1 := sin(π(2x+ y + z)) if (x, y, z) ∈ Ω(1),Ω(2)

u2 := sin(π(3πx+ y + z)) if (x, y, z) ∈ Ω(3),Ω(4)
(4.81)

and the diffusion coefficient is defined to be ρ1 = ρ2 = 2π and ρ3 = ρ4 = 3π, as in
Example 3. It is easy to see that we have the interface continuity conditions JuK|F =
Jρ∇uK|F ·nF = 0. As above, we solve the problem for λ ∈ {1, 2, 2.5, 3}. The contours of
the solution u on Ω without gaps and overlapping regions are shown in Figure 4.11(a).
In Figure 4.11(b), we plot the contours of the solution uh on an oblique cut through
the domain Ω, where the gap/overlap width is dM = 0.025. We have computed the
convergence rates r for the four different sizes dM , obtained by the different values of λ.
The results are plotted in Figure 4.11(c). We observe that the rates are approaching
the values that have been mentioned in Table 4.10.

In this last example, the dG-IETI-DP method again provides satisfactory results, sum-
marized in Table 4.15. Similar to Example 3, we only have three interfaces, therefore,
only a small number of dofs corresponding to those. Hence, we again observe quite
small condition numbers and iteration counts. Both choices of primal variables have
again identical performance, but in contrast to the previous example, the coefficient
scaling clearly provide better results than the stiffness scaling.

ALG. C ALG. B
coefficient scal. stiffness scal. coefficient scal. stiffness scal.

# dofs H/h κ It. κ It. κ It. κ It.
424 2 1.2 7 2.0 9 1.2 7 2.0 9
1416 3 1.2 7 3.1 12 1.2 7 3.1 12
6376 7 1.3 7 4.1 16 1.3 7 4.1 16
36264 15 1.3 7 3.6 16 1.3 7 3.6 16
240424 31 1.3 7 3.0 14 1.3 7 3.0 14

Table 4.15: Example 5, 3d example with p = 2 and inhomogeneous diffusion coefficient.
Dependence of the condition number (κ) and the number CG iterations (It.) on H/h
for the preconditioned system with coefficient and stiffness scaling. Choice of primal
variables: vertex evaluation and edge averages (left), vertex evaluation, edge and face
averages (right).
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Figure 4.11: Example 5: (a) The contours of u computed on Ω. (b) The contours of
uh computed on Ω with dg = 0.025. (c) Convergence rates r for the different dg sizes.



Chapter 5

Parallelization of IETI-DP Methods

In this chapter, we present our approach to the parallelization of cG-IETI-DP and
dG-IETI-DP methods. The parallelization of non-overlapping domain decomposition
methods, like the IETI-DP methods, is usually realized with respect to the subdo-
mains. This setting perfectly fits to the parallelization in a distributed memory frame-
work. As investigated in [123], one can further perform additional parallelization in
a shared memory setting on the individual subdomains with, e.g., OpenMP. We in-
vestigate the parallel scalability of the cG and dG IETI-DP methods as well as weak
and strong scaling in two- and three-dimensional domains for different B-Spline de-
grees. The implemented algorithms are based on energy minimizing primal subspaces,
which simplifies the parallelization of the solver part, but having more effort in the
assembling phase. Its implementation is already discussed in Section 3.2. We focus on
how to realize the communication by means of Message Passing Interface (MPI) and
present numerical examples. Impressing scalability tests have already been presented
for FETI-DP version, e.g. in [120], [121], [131], for the BDDC method in [232], [234]
and for its IgA version, e.g., in [23].

Our parallelization strategy is based on a splitting of patches via increasing the multi-
plicity of knots at the desired interfaces, i.e., reducing the continuity there to C0. We
propose a hybrid cG-dG version, where we first use the dG version (C−1 continuity) to
handle material interfaces (jumping coefficients), non-matching meshes and different
polynomial degrees, and as a second step using the cG version with C0 interfaces for
a further splitting of the single patches. The goal is to have at least as many patches
as processors and an almost equal number of dofs on each patch. As investigated in
Section 5.2.4, enforcing C0 continuity on edges or faces via knot multiplicity p yields
only a small increase in the number of dofs. This approach leads to a great flexibility
in parallelization and to high efficiency in terms of the total CPU time. However, one
has to keep in mind that for higher-order PDEs, the outlined procedure does not work,
since higher smoothness than C0 is required, e.g., C1 in the case of the biharmonic
equation. Nevertheless, one can circumvent C1 continuity by dG-techniques as well,
see, e.g., [169].

109



110 CHAPTER 5. PARALLELIZATION OF IETI-DP METHODS

In Section 5.1 we give a short outline how the parallelization is realized, while numerical
examples are presented in Section 5.2. We investigate weak and strong scaling for two-
and three-dimensional domains and different B-Spline degrees.

5.1 Parallelization of the Building Blocks

Here we investigate how the single operations can be executed in parallel in a dis-
tributed memory setting. The parallelization of the method is performed with respect
to the patches, i.e., one or several patches are assigned to a processor. The required
communication has to be understood as communication between patches, which are
assigned to different processors. The majority of the used MPI methods are performed
in its non-blocking version. We aim at overlapping computations with communications
wherever its possible.

5.1.1 Parallel Version of PCG

We solve Fλ = d with the preconditioned CG method. This requires a parallel im-
plementation of CG, where we follow the approach presented in Section 2.2.5.5 in
[183], see also [49]. This approach is based on the concept of accumulated and dis-
tributed vectors. We say a vector λacc = [λ

(q)
acc] is an accumulated representation of

λ, if λ(q)
acc(kq(i)) = λ(i), where i is the global index corresponding to the local in-

dex kq(i) on processor q. On the contrary, λdist = [λ
(q)
dist] is a distributed representa-

tion of λ, if the sum of all processor local contributions give the global vector, i.e.,
λdist(i) =

∑
q λ

(q)
dist(kq(i)). Hence, each processor only holds the part of λ, which be-

longs to its patches, either in a distributed or accumulated description. The Lagrange
multipliers and the search directions of the CG are represented in the accumulated
setting, whereas the residuals are given in the distributed representation. In order to
achieve the accumulated representation, information exchange between the neighbours
of a patch is required. This is done after applying the matrix and the preconditioner,
and implemented via MPI_Send and MPI_Recv operations.

The last aspect in the parallel CG implementation is the realization of scalar prod-
ucts. Given a distributed representation udist of u and an accumulated representation
of vacc of v, the scalar product (u, v)`2 is then given by (u, v)`2 =

∑
q(u

(q)
dist, v

(q)
acc)`2 ,

i.e., first the local scalar products are formed, globally added, and distributed with
MPI_Allreduce.

5.1.2 Assembling

The assembling routine of the IETI-DP algorithm consists of the following steps:
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1. Assemble the patch-local stiffness matrices and right-hand side,

2. assemble the system matrix in (3.18) and calculating its LU-factorization,

3. assemble SΠΠ and calculating its LU-factorization,

4. calculate the LU-factorization of K(k)
II ,

5. calculate the right-hand side {gΠ, g∆} = g̃ ∈ W̃ ∗, with g(k) = f
(k)
B −K

(k)
BI (K

(k)
II )−1f

(k)
I .

Most of the tasks are completely independent of each other. Hence, they can be per-
formed in parallel. Only the calculation of SΠΠ and g̃ = ĨTg require communication,
which will be explained in Section 5.1.3.

The LU-factorization of SΠΠ is only required at one processor, since it has to be solved
only once per CG iteration. It may be advantageous to distribute this matrix to all
other processors in order to reduce communication in the solver part. We refer to
[131] and references therein for improving scalability based on a different approach. In
the current paper, we investigate cases, where one, several and all processors hold the
LU-factorization of SΠΠ. Therefore, each processor is assigned to exactly one holder
of SΠΠ. This relation is implemented by means of an additional MPI communica-
tor.

We note that, for extremely large scale problems with ≥ 105 subdomains, one has to
consider different strategies dealing with S−1

ΠΠ. Most commonly one uses AMG and
solves SΠΠuΠ = fΠ in an inexact way, see, e.g., [120] and [130]. When considering a
moderate number of patches, i.e., 103 − 104, the approach using the LU-factorization
of SΠΠ is the most efficient one. In this paper, we restrict ourselves to this case.

The patch-local matrix S(k)
ΠΠ is obtained as a part of the solutions of (3.18) and the

assembling of the global matrix SΠΠ is basically a MPI_gatherv operation. In the case
where all processors hold SΠΠ we use MPI_allgatherv. If several processors hold the
LU factorization, we just call MPI_gatherv on each of these processors. A different
possibility would be to first assemble SΠΠ on one patch, distribute it to the other
holders and then calculate the LU-factorization on each of the processors.

5.1.3 Solver and Preconditioner

More communication is involved in the solver part. According to Algorithm 2 and
Algorithm 3 and, see also Algorithm 4 and Algorithm 5 for the corresponding dG-
variant, we have to perform the following operations:

1. application of B and BT and its scaled versions

2. application of Ĩ and ĨT

3. application of S̃−1
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4. application of S−1

The only operations which require communication are Ĩ and ĨT . To be more precise,
the communication is hidden in the operators A and R, see Section 3.2, all other
operations are block operations, where the corresponding matrices are stored locally
on each processor. In principle, their implementation is given by accumulating and
distributing values. The actual implementation depends on how many processors hold
the coarse grid problem.

In order to implement Ĩ, we need the distribution operation R. If all processors hold
SΠΠ, this operation reduces to just extracting the right entries. Hence it is local and
no communication is required. Otherwise, each holder of SΠΠ reorders and duplicates
the entries of wΠ in such a way, that all entries corresponding to the patches of a
single slave are in a contiguous block of memory. Then we utilize the MPI_scatter
method to distribute only the necessary data to all slave processors. See Figure 5.1
for an illustration.

We now arrive at the implementation of ĨT . Each processor stores the values of w(k)
Π

in a vector w̃(k)
Π of length nΠ already in such a way, that

∑N
k=1 w̃

(k)
Π = wΠ. Storing

the entries in this way enables us to use the MPI reduction operations for an efficient
assembly of the local contributions. If only one processor holds the coarse problem,
we use the MPI_Reduce method to perform this operation. Similarly, if all processors
hold SΠΠ, we utilize the MPI_Allreduce method. If several processors have the coarse
grid problem, then we use a two level approach. First, each master processor collects
the local contributions from its slaves using the MPI_Reduce operation. In the second
step, all the master processors perform an MPI_Allreduce operation to accumulate the
contributions from each group and simultaneously distribute the result under them.
This procedure is visualized in Figure 5.1.

(a) Distribution operation (b) Assembling operation

Figure 5.1: Distribution and assembling operation, illustrated for four processors,
partitioned into two groups corresponding to two S−1

ΠΠ holder.
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(a) Representation of 2d
quarter annulus with 64 =
8× 8 patches.

(b) Representation of 3d
twisted quarter annulus with
1024 = 8× 8× 16 patches.

(c) Jumping diffusion co-
efficient pattern α, where
{blue, red} := {10−3, 103}.

Figure 5.2: Illustration of the two- and three-dimensional computational domain and
jumping coefficient pattern.

5.2 Numerical Examples

We consider the model problem (2.1) on two- and three-dimensional computational
domains decomposed into 1024 patches. In the two-dimensional case, we use the
quarter annulus divided into 32× 32 patches, illustrated as a decomposition in 8× 8
patches in Figure 5.2(a). The three-dimensional domain is the twisted quarter an-
nulus decomposed into 8 × 8 × 16 patches as illustrated in Figure 5.2(b). For nu-
merical tests on the unit-square, we refer to [89]. We note that, in the IgA frame-
work, we cannot choose the number of patches as freely as in the finite element case
since they are fixed by the geometry. Therefore, the number of 1024 patches stays
constant throughout the tests. We investigate the case of having jumping diffusion
coefficients across the patch interfaces and constant value inside the patch. We ar-
range the values {10−3, 103} of α in a checkerboard like manner, as illustrated for
the two-dimensional domain in Figure 5.2(c), where, in two dimensions, always 4
patches have the same diffusion coefficient, and 8 patches in three dimensions. In
all tests for the two-dimensional domain we consider the smooth right-hand side
f(x, y) = 20π2 sin(4π(x + 0.4)) sin(2π(y + 0.3)), whereas, in the three-dimensional
case, we use f(x, y, z) = 29π2 sin(4π(x + 0.4)) sin(2π(y + 0.3)) sin(3π(z + 0.2)). The
boundary conditions are chosen in such a way that, in case of homogeneous diffu-
sion coefficient, the solution would be u(x, y) = sin(4π(x + 0.4)) sin(2π(y + 0.3)) and
u(x, y) = sin(4π(x + 0.4)) sin(2π(y + 0.3)) sin(3π(z + 0.2)), respectively. For the dis-
cretization, we use tensor B-Spline spaces Vh of different degrees p. We increase the
B-Spline degree in such a way that the number of knots stay the same, i.e., the smooth-
ness k of Vh increases. We restrict ourselves to the case of B-Splines of maximal
smoothness k = p − 1, since they provide the smallest number of dofs for the same
order of convergence. In Section 5.2.4, we analyze the effect of different continuity in
the interior of the patches on the proposed method and its scalability.

The aim of this section is to investigate the scaling behaviour of the cG-IETI-DP and
dG-IETI-DP method. Although, we also consider the dG variant, we restrict ourselves
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to matching meshes on the patch interfaces. Otherwise, it would not be possible to
compare the two methods. Moreover, having different meshes on each patch may lead
to larger number of dofs on some patches, which results in load imbalances and affects
the scaling in a negative way. The domain is refined in a uniform way by inserting
a single knot for each dimension on each knot span. We denote by Hk the patch
diameter and by hk the characteristic mesh-size on Ω(k). The set of primal variables
is chosen by continuous patch vertices and interface averages for the two-dimensional
setting. For the three-dimensional examples, we choose only continuous edge averages
in order to keep the number of primal variables small. In Section 5.2.3, we investigate
the influence of different sets of primal variables on the scalability of the method.

In [22], the authors investigate the related BDDC method while having higher continu-
ity across the interfaces, i.e., the need of having fat interfaces, leading to an increased
condition number unless the so-called deluxe scaling is used. The powerful but expen-
sive deluxe scaling definitely reduces the condition number (and also the CG iteration)
compared to the here used coefficient scaling. Also, with respect to p-dependence, the
deluxe scaling provides promising results. Moreover, in the recent paper [23], a very
promising combination of an adaptive selection of primal constraints with the men-
tioned technology is presented, eliminating the drawback of having too large coarse
spaces. However, in both papers, the focus is on the scalability of the condition number
and CG-iterations, considering different polynomial degrees, mesh-size and jumping
diffusion coefficient. In contrast to this, here we focus on the parallel scalability, in-
vestigating the weak and strong scaling with respect to the number of used cores. For
comparison, we also report on the number of CG iterations in the tables. For further
numerical results regarding the scalability of the considered method with respect to
H/h and p, and robustness with respect to jumps in the diffusion coefficient we refer
to Section 3.4 and Section 4.3.

The PCG method is used to solve (4.27) with the scaled Dirichlet preconditionerM−1
sD .

We choose zero initial guess and a relative reduction of the residual of 10−8. For solving
the local systems and the coarse grid problem, a direct solver is used.

The algorithm is realized in the isogeometric open source C++ library G+SMO [162],
which is based on the Eigen library [76]. We utilize the PARDISO 5.0.0 Solver Project
[140] for performing the LU factorizations. The code is compiled with the gcc 4.8.3
compiler with optimization flag -O3. For the communication between the processors,
we use the MPI 2 standard with the OpenMPI 1.10.2 implementation. The results are
obtained on the RADON11 cluster at Linz. We use 64 out of 68 available nodes, each
equipped with 2x Xeon E5-2630v3 “Haswell” CPU (8 Cores, 2.4Ghz, 20MB Cache)
and 128 GB RAM. This gives the total number of 1024 available cores.

We investigate two quantities, the assembling phase and the solving phase. In the
assembling phase, we account for the time used for

1https://www.ricam.oeaw.ac.at/hpc/
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• assembling the local matrices and right-hand sides,

• LU-factorization of KII ,

• LU-factorization of
[
K CT

C 0

]
,

• calculation of Φ̃ and µ̃,

• assembling the coarse grid matrix SΠΠ and calculation of its LU factorization.

As already indicated in Section 5.1, SΠΠ is only assembled on certain processors. The
solving phase consists of the CG algorithm for (4.27) and the back-substitution to
obtain the solution from the Lagrange multipliers. The main ingredients are

• application of F ,

• application of M−1
sD .

In Section 5.2.1 and Section 5.2.2, we study the weak and strong scaling behaviour
for the cG-IETI-DP and the dG-IETI-DP method. In this two sections, we assume
that only one processor holds the coarse grid matrix SΠΠ. The comparison of having
a different number of SΠΠ holders is done in Section 5.2.5.

5.2.1 Weak Scaling

In this section, we investigate the weak scaling behaviour, i.e., the relation of problem
size and number of processors is constant. In each refinement step we multiply the
number of used cores by 2d, d ∈ {2, 3}. The ideal behaviour would be a constant time
for each refinement.

First, we consider the two-dimensional case. We apply three initial refinements and
start with a single processor and perform up to additional 5 refinements with maximum
1024 processors. We choose as primal variables continuous vertex values and edge
averages. The results for degree p ∈ {2, 3, 4} are illustrated in Figure 5.3. The first row
of figures corresponds to the cG-IETI-DP method, while the second one corresponds
to the dG-IETI-DP method. The left column of Table 5.1 summarizes timings and the
speedup for the cG-IETI-DP method, whereas the right column presents the results
for the dG-IETI-DP method. For each method, we investigate the weak scaling for the
assembling (red) and solution (blue) phase. As in Figure 5.3, we present the scaling
and timings for p ∈ {2, 3, 4}.

We observe that the time used for the assembling stays almost constant, hence shows
quite optimal behaviour. However, the time for solving the system increases when
refining and increasing the number of used processors. In the cG case, there is already
a significant increase of solving time when increasing the number of processors from
16 to 64 of a factor around 1.5. Up to 1024 cores, one observes a steady increase
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Figure 5.3: Weak scaling of the cG-IETI-DP (first row) and dG-IETI-DP (second row)
method for B-Spline degrees p ∈ {2, 3, 4} in two dimensions. Each degree corresponds
to one column.

by 1-3 seconds each refinement. In the dG case, one can consider the increase in
the solving time as acceptable up to 64 cores, then one also observes an increase by
a constant factor at each refinement. Overall, one can say, that the solving time
doubles or triples, when going from 1 to 1024 processors. This is due to the quasi
optimal condition number bound with respect to H/h of the IETI-DP type methods,
i.e., the number of CG iterations increases logarithmically with decreasing h and fixed
H, cf. Theorem 3.20. Secondly, as already pointed out in Section 5.1, the solving
phase consists of more communication between processors, which cannot be completely
overlapped with computations. Moreover, one also has to take in account global
synchronization points in the conjugate gradient method.

Next, we consider the weak scaling for the three-dimensional case. As already indicated
in the introduction of this section, we choose only continuous edge averages as primal
variables. We perform the tests in the same way as for the two-dimensional case.
However, we already start with two processors and perform two initial refinements.
Multiplying the number of used processors by 8 with each refinement, we end up again
with 1024 processors on the finest grid. The two algorithms behave similar to the two-
dimensional case, but show an even stronger increase in the solving time. Especially,
the step from 128 to 1024 cores shows a strong increase for both the assembling and
solving time. However for both the two- and three-dimensional case, the assembling
and solving time is either well balanced or the assembling part is the dominant factor,
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cG-IETI-DP p = 2 dG-IETI-DP p = 2

# procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

1 98241 10 4.6 2.2 6.9 132868 11 6.4 3.2 9.6
4 326593 11 2.9 2.3 5.3 392964 11 4.1 2.8 6.9

16 1176513 13 2.8 2.6 5.5 1306372 13 3.6 3.0 6.6
64 4449217 14 3.0 3.7 6.7 4706052 14 3.4 3.8 7.2
256 17286081 15 3.3 4.7 8.1 17796868 15 3.7 4.9 8.6
1024 68125633 16 3.8 5.6 9.5 69144324 16 4.3 5.7 10.17

cG-IETI-DP p = 3 dG-IETI-DP p = 3

# procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

1 119617 11 6.8 2.9 9.8 158212 11 9.6 3.8 13.5
4 364353 12 5.1 3.2 8.4 434692 12 7.0 3.8 10.8

16 1247041 13 5.3 3.4 8.8 1380868 13 6.3 3.6 10.0
64 4585281 15 5.4 5.9 11.3 4846084 15 6.1 6.3 12.5
256 17553217 16 6.1 7.5 13.7 18067972 16 6.7 7.7 14.4
1024 68654913 17 7.3 9.5 16.9 69677572 17 7.8 9.7 17.6

cG-IETI-DP p = 4 dG-IETI-DP p = 4

# procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

1 143041 12 10.8 3.6 14.5 185604 12 15.4 4.9 20.3
4 404161 13 9.3 4.7 14.0 478468 13 11.8 4.7 16.5

16 1319617 14 9.2 4.4 13.7 1457412 14 11.0 5.1 16.1
64 4723393 15 9.2 8.1 17.4 4988164 15 10.4 8.3 18.8
256 17822401 16 10.7 11.0 21.8 18341124 17 11.1 10.4 21.5
1024 69186241 17 12.6 14.4 27.0 70212868 17 13.1 14.6 27.7

Table 5.1: Weak scaling results for the two-dimensional testcase for the cG and dG
IETI-DP method. Left column contains results for the cG variant and the right column
for the dG version. Each row corresponds to a fixed B-Spline degree p ∈ {2, 3, 4}

which gives an overall acceptable weak scaling. The results are visualized in Figure 5.4
and summarized in Table 5.2. Note, for both methods, using p = 4, we exceeded the
memory capacity of the cluster.

5.2.2 Strong Scaling

Secondly, we are investigating the strong scaling behaviour. Now we fix the problem
size and increase the number of processors. In the optimal case, the time used for a
certain operation reduces in the same way as the number of used processors increases.
We use the same primal variables for the strong scaling studies as in the weak scaling
studies in Section 5.2.1. Note, we use 1024 patches in all tests. Therefore, the number
of iterations remains constant when increasing the number of processors.

Again as in Section 5.2.1, we begin with the two-dimensional example. We perform 7



118 CHAPTER 5. PARALLELIZATION OF IETI-DP METHODS

   2   16  128 1024

Procs

0

5

10

15

20

25

30

35

40

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(a) p = 2

   2   16  128 1024

Procs

0

20

40

60

80

100

120

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(b) p = 3

   2   16  128 1024

Procs

0

20

40

60

80

100

120

140

160

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(c) p = 4

   2   16  128 1024

Procs

0

10

20

30

40

50

60

70

80

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(d) p = 2

   2   16  128 1024

Procs

0

50

100

150

200

250

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(e) p = 3

   2   16  128 1024

Procs

0

50

100

150

200

250

300

350

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(f) p = 4

Figure 5.4: Weak scaling of the cG-IETI-DP (first row) and dG-IETI-DP (second row)
method for B-Spline degrees p ∈ {2, 3, 4} in three dimensions. Each degree corresponds
to one column. No timings are obtained in the case of 1024 cores in (c) and (f) due
to memory limitations.

initials refinements and end up with 17 Mio. dofs on 1024 patches. We start already
with 4 processors in the initial case and do 8 refinements until we reach 1024 cores.
Similar to Section 5.2.1, the results for p ∈ {2, 3, 4} are illustrated in Figure 5.5 and
summarized in Table 5.3.

We observe that the assembling phase has a quite good scaling performance, as already
observed for the weak scaling results in Section 5.2.1. Moreover, the higher the B-Spline
degree, the better the parallel performance behaves. This holds due to increased
computational costs for the parallel part. Similar to the weak scaling results, the
solving phase does not provide such an excellent scaling as the assembling phase.
Still, we obtain a scaling of around 700 when using 1024 processors. We note that the
degree of the B-Splines does not seem to have such a significant effect on the scaling
for both solving phase and the assembling phase.

In the three-dimensional example we perform four initial refinements and obtain
around 5 Mio. dofs. The presentation of the results is done in the same way as
in the previous examples, see Figure 5.6 and Table 5.4. For higher B-Spline degrees,
the methods also provide an excellent scaling behaviour for the assembling phase. For
the case p = 2 in both cG and dG case, the parallel part of the algorithm seems to be
too small for better scalability. In comparison with the 2d version, the solving phase
does not scale so well any more. We only obtain a speedup of around 500 using 1024
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cG-IETI-DP p = 2 dG-IETI-DP p = 2

# procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

2 198904 15 8.9 3.8 12.7 383456 26 24.4 15.7 40.2
16 961272 16 8.1 3.4 11.5 1488864 28 16.4 10.4 26.8
128 5766904 18 9.9 6.8 16.7 7508960 30 18.6 18.8 37.5
1024 39511800 21 18.8 21.4 40.2 45796320 32 27.5 45.2 72.7

cG-IETI-DP p = 3 dG-IETI-DP p = 3

# procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

2 320760 16 31.2 8.4 39.6 574560 30 81.6 33.7 115.4
16 1286904 18 30.1 7.2 37.3 1927776 32 56.1 21.9 78.0
128 6795000 20 36.8 14.5 51.3 8738400 34 60.7 40.5 101.2
1024 43124472 22 63.0 47.8 110.8 49786464 35 88.4 112.9 201.3

cG-IETI-DP p = 4 dG-IETI-DP p = 4

# procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

2 484344 18 110.0 18.0 128.0 818400 33 278.4 69.7 348.2
16 1678840 19 109.1 14.8 123.9 2444000 35 199.3 49.4 248.8
128 7938552 21 127.2 26.0 153.2 10094304 37 192.6 68.5 261.1
1024 ∼48000000 x x x x ∼53000000 x x x x

Table 5.2: Weak scaling results for the three-dimensional testcase for the cG and dG
IETI-DP method. Left column contains results for the cG variant and the right column
for the dG version. Each row corresponds to a fixed B-Spline degree p ∈ {2, 3, 4}. No
timings are available for both methods with p = 4 on 1024 cores due to memory
limitations.

cores. Comparing the cG with the dG version, the latter one has a slightly worse
performance. Having a closer look at the timings, we observe that the different scaling
of the two methods originates from small load imbalances in the interior domains due
to the additional layer of dofs and the larger number of primal variables. The latter
one leads to an increased time in solving (3.18) due to a larger number of right-hand
sides on the interior patches. One can further optimize the three-dimensional case by
considering different strategies for the primal variables, where one aims for smaller
and more equally distributed numbers of primal variables.

5.2.3 Influence of the Primal Variables

In this section, we investigate the influence of different sets of primal variables on
the strong scalability. This is especially important for three-dimensional problems,
because the number of primal variables may grow rapidly with the number of patches.
A common choice for primal variables in three dimensions are combinations of vertex
values V , edge averages E and face averages F . We perform tests for the cG-IETI-DP
and dG-IETI-DP method on the twisted quarter annulus as in Fig. 5.2(b) having a
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Figure 5.5: Strong scaling of the cG-IETI-DP (left column) and dG-IETI-DP (right
column) method for B-Spline degrees p ∈ {2, 3, 4} in two dimensions. The markers
{◦, ∗,3} as well as different shades of red (assembling phase) and blue (solving phase)
correspond to the degrees {2, 3, 4}.

decomposition in 1024 patches , B-Spline degree p = 3 and a homogeneous diffusion
coefficient. In addition to the timings for the assembling and solution phase, we also re-
port on the number of primal variables, the number of CG-iterations and the obtained
speedup for 1024 processors. The results are listed in Table 5.6. For illustration we
summarized the number of primal variables for different settings and with increasing
number of patches in case of the twisted quarter annulus, see Table 5.5.

The results validate the well known fact that for three-dimensional problems using
only vertex values as primal variables leads to a large number of iterations, see also
Section 3.4 and Section 4.3 for numerical experiments on the scalability of H/h. The
choice V+E+F of primal variables results in a large set of primal variables, especially
in the dG setting, but gives the smallest number of CG-iterations. Hence, one has to
find a balance between a rich set of primal variables and efficiency of the method.
Overall, for our purposes, the choice of having only edge averages E gives the most
appropriate and efficient setting, i.e. having the smallest total computation time.
Concerning parallel scalability on a fixed number of domains, all four methods give
satisfactory results, although only vertex values as primal variables are practically
useless for three-dimensional domains, since the number of CG iterations does not
depend in a quasi-optimal way on H/h.

5.2.4 Effect of Continuity in the Interior of the Patches

This section deals with the influence of different degrees of smoothness of the B-Splines
in the interior of the patches on the parallel scalability. We only investigate the two-
dimensional case on the quarter annulus illustrated in Fig.5.2(a) on a decomposition
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2d p = 2 p = 3 p = 4

cG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

# procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
4 215.2 4 237.8 4 408.8 4 401.2 4 719.5 4 529.4 4
8 107.2 8 118.8 8 204.3 8 200.5 8 359.7 8 264.6 8
16 53.5 16 59.2 16 101.8 16 100.7 15 179.3 16 132.6 15
32 26.7 32 30.6 31 50.8 32 51.2 31 89.8 32 67.2 31
64 13.6 63 18.5 51 26.2 62 29.7 53 46.0 62 36.9 57
128 7.1 121 9.7 97 13.4 121 15.9 100 23.3 123 20.4 103
256 3.7 232 5.3 179 6.7 242 8.4 189 11.9 240 11.7 180
512 1.9 444 2.5 372 3.5 456 3.9 406 6.0 473 5.7 371
1024 1.0 828 1.3 733 1.7 928 1.9 811 2.9 962 2.8 753
Iter. 15 16 16

dG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

# procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
4 244.7 4 244.5 4 452.1 4 407.3 4 783.8 4 576.7 4
8 122.3 8 122.2 8 226.0 8 203.6 8 391.8 8 288.3 8
16 60.5 16 61.6 15 112.7 16 102.8 15 196.8 15 146.9 15
32 30.1 32 31.0 31 56.0 32 52.3 31 98.3 31 74.3 31
64 15.3 63 19.4 50 28.9 62 29.6 55 50.0 62 41.7 55
128 7.9 123 10.3 94 14.6 123 15.9 102 25.0 125 22.5 102
256 4.0 239 5.5 176 7.4 242 9.0 179 13.0 240 12.4 186
512 2.1 454 2.6 364 3.8 471 4.1 397 6.5 481 6.1 376
1024 1.1 847 1.4 671 1.8 955 2.1 744 3.2 962 3.0 748
Iter. 15 16 17

Table 5.3: Strong scaling results: Time (s) and Speedup for p ∈ {2, 3, 4} in two
dimensions having approximately 17 Mio. dofs. First row shows results for the cG
variant of the IETI-DP method, whereas the second row contains results for the dG
version. Each column corresponds to a degree p.

in 1024 patches. We use a homogeneous diffusion coefficient, edge averages and vertex
values as primal variables, and we fix the B-Spline degree p = 4. In contrast to the
other sections, where we used B-Spline with maximal smoothness k = p− 1, we vary
the smoothness of the B-Splines in the interior of the patches. We want to note that,
in case of the cG-IETI-DP method, we still have C0 smoothness across the interfaces
and discontinuous B-Spline spaces in the dG version. The results are presented in
Table 5.7.

We observe that the number of IETI-DP iterations is robust with respect to the
smoothness. When increasing the multiplicity, the time spent in the assembling phase
is significantly increasing. This origins from the fact that the local LU factoriza-
tions require more time due to the larger system size, whereas the assembling of the
local matrices stays approximately constant. However, the total number of dofs in-
creases drastically, when reducing the smoothness of the B-Splines in the interior of
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Figure 5.6: Strong scaling of the cG-IETI-DP (left column) and dG-IETI-DP (right
column) method for B-Spline degrees p ∈ {2, 3, 4} in three dimensions. The markers
{◦, ∗,3} as well as different shades of red (assembling phase) and blue (solving phase)
correspond to the degrees {2, 3, 4}.

the patches. Moreover, no additional order of approximation in terms of powers of h is
obtained by reducing the continuity. On the other hand, the increased computational
load per patch has a positive influence on the parallel scalability.

In contrast to the experiments above, performing parallelization by subdividing patches
via reducing the continuity at certain knots to C0 can still be recommended. In Ta-
ble 5.8, for comparison, we included the total number of dofs on a domain with smooth
splines (here p = 3 and k = 2), and consequently enforcing C0 continuity at certain
knots to subdivide the patch into subpatches with C0 continuity across the sub-patch
interfaces. Clearly, this increases the total number of dofs, but if the interior of a single
patch is still sufficiently large, the total number of dofs does not explode. Moreover,
comparing the effort to be taken to handle smooth spline spaces over interfaces via
the use of fat interfaces and the required expensive preconditioner, using C0 will pay
off in many cases.

5.2.5 Study on the Number of S−1
ΠΠ Holders

In this last section of the numerical experiments, we want to investigate the influence
of the number of holders of S−1

ΠΠ on the scaling behaviour. As already indicated in
Section 5.1.3, if more processors hold the LU-factorization of the coarse grid matrix, it
is possible to decrease the communication effort after applying S−1

ΠΠ, while having more
communication before the application. The advantage of this strategy is to be able to
have a better overlap of communication with computations. However, one has to take
into account that this also increases the communication in the assembling phase, since
the local contribution S(k)

ΠΠ has to be sent to all the master processors.
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3d p = 2 p = 3 p = 4

cG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

# procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
8 156.5 8 92.4 8 592.3 8 205.7 8 2028.0 8 372.8 8
16 77.2 16 46.5 15 296.3 15 102.4 16 1014.7 15 186.8 15
32 38.4 32 23.7 31 146.6 32 52.3 31 502.4 32 95.2 31
64 19.4 64 13.9 53 73.4 64 35.6 46 249.7 64 59.2 50
128 10.5 119 7.2 102 37.6 125 15.8 104 127.0 127 28.5 104
256 5.6 221 4.4 167 19.2 245 9.3 177 64.2 252 18.1 164
512 3.1 396 2.2 332 10.1 468 5.0 324 32.8 494 9.6 308
1024 1.9 638 1.3 537 5.5 861 3.0 535 17.1 947 5.7 518
Iter. 18 20 21

dG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

# procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
8 250.4 8 209.8 8 888.1 8 451.4 8 2906.8 8 855.4 8
16 125.6 15 104.5 16 443.5 16 226.3 15 1447.9 16 423.1 16
32 64.9 30 56.0 29 223.4 31 121.3 29 733.0 31 215.8 31
64 34.3 58 33.7 49 115.1 61 65.6 55 378.3 61 114.2 59
128 19.1 104 20.6 81 62.1 114 40.9 88 195.7 118 78.3 87
256 10.6 188 11.5 145 32.3 219 26.3 137 99.8 232 53.0 129
512 5.7 347 5.8 285 17.0 416 13.8 261 52.5 442 26.3 260
1024 3.5 572 3.5 476 9.1 773 7.3 488 26.8 867 13.9 491
Iter. 30 34 37

Table 5.4: Strong scaling results: Time (s) and Speedup for p ∈ {2, 3, 4} in three
dimensions having approximately 5 Mio. dofs. First row shows results for the cG
variant of the IETI-DP method, whereas the second row contains results for the dG
version. Each column corresponds to a degree p.

We only consider the two-dimensional domain, where we perform 7 initials refinements,
but on a decomposition with 4096 subdomains and end up with around 70 Mio. dofs.
This gives a comparable setting as in Section 5.2.1 having the most refined domain.
In order to better observe the influence of the number of S−1

ΠΠ holders, we increase the
number of subdomains, leading to a larger coarse grid problem. We only investigate
the case of using 1024 processors and the number of SΠΠ holders given by 2n, n ∈
{0, 1, . . . , 10}. Hence, we obtain the number of master processors ranging from 1 to
1024, such that each master has the same number of slaves. The results are summarized
in Figure 5.7 and Table 5.9.

We observe that choosing several holders of the coarse grid problem in the cG ver-
sion does not really have a significant effect. However, in the dG version, due to an
increased number of primal variables, the use of several holders actually increases the
performance of the solver by around 10%. Nevertheless, what is gained in the solving
part does not pay off with the additional effort in the assembling phase. Considering
the total computation time in Table 5.9, the best options is still either using only a
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cG-IETI-DP dG-IETI-DP
#patches V V + E + F V + E E V V + E + F V + E E

2 = 1× 1× 2 4 9 8 4 8 17 16 8
16 = 2× 2× 4 37 129 101 64 120 308 280 160

128 = 4× 4× 8 217 1017 713 496 1016 2792 2488 1472
1024 = 8× 8× 16 1369 7737 4985 3616 8184 23096 20344 12160

Table 5.5: Number of primal variables for different configurations and increasing num-
ber of patches in absence of eliminated Dirichlet boundaries.

single coarse grid problem on one processor or making a redundant factorization on
each processor.
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Figure 5.7: Influence of the number of S−1
ΠΠ holders on the scaling. First row corre-

sponds to cG-IETI-DP, second row to dG-IETI-DP. Each column has a fixed degree
p ∈ {2, 3, 4}. Figures (a-c) summarizes the cG version and Figures (d-f) the dG
version, respectively.
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3d V V + E + F V + E E
cG-IETI-DP

#procs Ass. Solv. Ass. Solv. Ass. Solv. Ass. Solv.

8 584.8 1310.7 658.3 188.2 602.0 203.8 592.6 204.9
16 292.5 654.6 329.0 93.2 302.0 102.3 296.3 102.0
32 145.0 335.3 161.8 47.9 148.6 52.8 146.7 52.5
64 72.3 219.4 80.8 30.3 73.9 32.2 73.1 31.5
128 37.0 101.2 41.9 15.0 38.0 17.2 37.3 15.5
256 18.8 59.8 21.9 8.9 19.9 9.8 19.2 9.8
512 9.8 32.0 11.3 4.6 10.1 5.0 10.0 4.9
1024 5.3 19.4 6.2 2.8 5.6 3.1 5.4 3.0

#primal dofs 735 5951 3199 2464
Iterations 133 18 20 20

Largest speedup
Ass. / Solv. 881/538 849/523 859/525 868/531

dG-IETI-DP

#procs Ass. Solv. Ass. Solv. Ass. Solv. Ass. Solv.

8 843.8 1599.3 1058.4 367.2 952.4 346.3 884.0 376.9
16 422.7 806.9 530.2 179.6 473.1 171.7 441.2 190.9
32 213.0 420.2 274.9 95.1 245.3 90.8 221.8 98.3
64 108.6 221.5 142.5 53.3 126.2 49.0 114.8 55.2
128 57.8 144.8 76.4 35.1 68.5 32.5 60.9 34.6
256 29.9 84.9 40.7 22.2 36.5 19.8 32.0 21.3
512 15.4 40.2 21.8 10.6 19.6 10.1 16.6 10.3
1024 8.3 24.8 12.4 7.1 11.0 6.4 9.0 6.1

#primal dofs 5880 18488 15736 9856
Iterations 124 26 25 28

Largest speedup
Ass. / Solv. 809/515 679/413 691/430 784/490

Table 5.6: Strong scaling results for different set of primal variables: Time (s) for fixed
degree p = 3 in three dimensions having approximately 7 Mio. dofs. First row shows
results for the cG variant of the IETI-DP method, whereas the second row contains
results for the dG version. Each column corresponds a different set of primal variables.
Number of primal variables, number of iterations and speedup of the assembling and
solution phase is summarized for each set of primal variables.
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2d C3 C2 C1 C0

cG-IETI-DP

#procs Ass. Solv. Ass. Solv. Ass. Solv. Ass. Solv.

4 160.8 84.1 375.4 340.9 494.8 652.1 507.3 616.1
8 79.6 41.6 187.9 171.1 246.4 332.4 252.4 307.4
16 40.8 21.3 94.2 86.1 123.7 162.4 126.3 153.5
32 19.7 10.7 46.8 44.3 61.7 83.1 63.4 77.5
64 10.3 7.3 24.2 25.2 31.8 44.9 32.2 43.8
128 5.2 3.9 11.8 14.1 16.2 25.1 16.4 24.2
256 2.6 2.1 6.3 7.4 8.3 13.4 8.5 12.3
512 1.3 1.2 3.3 3.6 4.4 6.1 4.7 5.7
1024 0.6 0.7 1.6 1.8 2.0 3.1 2.3 3.0

#dofs 4723393 17553217 38511553 67598401
Iterations 15 15 16 16

Largest speedup
Ass. / Solv. 959/487 923/745 950/823 872/822

dG-IETI-DP

#procs Ass. Solv. Ass. Solv. Ass. Solv. Ass. Solv.

4 181.3 91.1 416.3 354.4 561.7 668.8 586.2 632.4
8 90.6 45.5 208.1 177.1 280.8 334.4 293.1 316.2
16 45.1 22.9 102.3 88.2 139.5 165.9 146.5 156.8
32 22.5 11.6 50.9 45.0 69.4 85.1 72.8 79.0
64 11.4 7.2 26.3 25.8 35.0 46.3 36.5 46.4
128 5.8 4.4 13.3 14.2 18.1 25.4 18.7 29.4
256 2.9 2.4 6.9 7.8 9.1 12.9 9.8 12.8
512 1.5 1.2 3.6 3.8 4.8 6.2 5.3 5.8
1024 0.8 0.7 1.8 1.9 2.4 3.2 2.7 3.1

# dofs 4988164 18067972 39276292 68613124
Iterations 15 15 15 16

Largest speedup
Ass. / Solv. 862/463 917/728 925/820 842/816

Table 5.7: Strong scaling results for different smoothness k in the interior of the
patches: Time (s) for fixed degree p = 4 in two dimensions. On the interface we
either have C0 continuity or discontinuous B-Splines. First row shows results for the
cG variant of the IETI-DP method, whereas the second row contains results for the
dG version. Each column corresponds a to different smoothness of the splines. The
total number of dofs, number of iterations and speedup of the assembling and solution
phase is summarized for each considered spline smoothness.
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2d 3d
#patches cG-IETI-DP dG-IETI-DP #patches cG-IETI-DP dG-IETI-DP
1 = 1× 1 1054729 1054729 2 = 1× 1× 2 4496178 4530496
4 = 2× 2 1060893 1065004 16 = 2× 2× 4 4812125 5063368

16 = 4× 4 1073257 1085632 128 = 4× 4× 8 5487201 6230368
64 = 8× 8 1098129 1127200 1024 = 8× 8× 16 7016801 8988544

256 = 16× 16 1148449 1211584
1024 = 64× 64 1251393 1385344

Table 5.8: Total number of dofs for fixed mesh-size h, but different decomposition of
the geometry, i.e., h-refinement and patch-refinement sums up to 10 (2d) and 6 (3d)
refinement steps. The polynomial degree is fixed with p = 3 and no elimination of
Dirichlet dofs is considered. At the interface we consider either C0 continuous (cG-
IETI-DP) or discontinuous B-Spline spaces (dG-IETI-DP).

cG p = 2 p = 3 p = 4

# S−1
ΠΠ

Holder
Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

1 3.61 3.66 7.27 6.50 5.52 12.02 11.23 8.30 19.53
2 4.49 3.58 8.07 7.97 5.57 13.54 13.83 8.02 21.85
4 4.53 3.82 8.35 7.65 5.40 13.05 13.60 8.09 21.69
8 4.46 3.63 8.09 7.72 5.76 13.48 13.32 8.15 21.47
16 4.34 3.49 7.83 7.64 5.61 13.25 13.16 7.93 21.09
32 4.33 3.73 8.06 7.74 5.39 13.13 13.15 8.78 21.93
64 4.34 3.59 7.93 7.62 5.45 13.07 13.10 8.04 21.14
128 4.49 4.06 8.55 7.60 6.05 13.65 13.06 8.47 21.53
256 4.31 4.64 8.95 7.63 6.43 14.06 13.02 8.81 21.83
512 4.34 3.61 7.95 7.55 5.71 13.26 13.23 8.09 21.32
1024 3.73 3.80 7.53 6.56 5.77 12.33 11.19 8.26 19.45
dG p = 2 p = 3 p = 4

# S−1
ΠΠ

Holder
Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

1 4.57 5.09 9.66 7.28 7.16 14.44 12.44 10.01 22.45
2 5.23 4.16 9.39 9.10 6.26 15.36 15.02 9.01 24.03
4 5.25 4.18 9.43 9.12 6.58 15.70 14.93 8.73 23.66
8 5.19 4.28 9.47 8.97 6.29 15.26 14.95 9.30 24.25
16 5.26 4.20 9.46 8.78 6.41 15.19 14.79 9.16 23.95
32 5.11 4.64 9.75 8.82 6.29 15.11 14.96 9.05 24.01
64 5.35 4.75 10.1 9.06 6.87 15.93 14.85 9.37 24.22
128 5.07 6.06 11.13 8.88 8.25 17.13 14.61 10.65 25.26
256 5.07 5.89 10.96 8.66 7.77 16.43 14.52 11.32 25.84
512 5.03 6.15 11.18 8.66 8.29 16.95 14.43 11.16 25.59
1024 4.70 5.33 10.03 7.45 7.68 15.13 12.89 10.60 23.49

Table 5.9: Influence of the number of processors having an LU-factorization of SΠΠ.
Timings in seconds for 1024 Processors on a domain with around 70 Mio. dofs and
2048 subdomains.



Chapter 6

Inexact Variants

This chapter deals with the incorporation of inexact solvers in the IETI-DP algorithm.
Due to the fact that direct solvers require a large amount of memory, especially in the
case of high B-Spline degree p when the bases functions have a large support, we aim
at replacing them by inexact solvers, e.g., Multigrid (MG) and Fast Diagonalization
(FD) methods. Throughout the section, we only consider the continuous Galerkin
case. In IgA, these methods are usually applied to discretizations on a single patch.
The combination with IETI-DP is one way to extend these methods to multi-patch
domains. Recently, an extension of p-robust MG to multi-patch domains using additive
Schwarz smoothers is presented in [204]. For better readability, we do not use boldface
letters to highlight matrices and vectors throughout this chapter.

After a short description of the MG and FD methods in Section 6.1, we explain the
use of the preconditioners in the IETI-DP algorithm in Section 6.2. Finally, we present
numerical experiments in Section 6.3.

6.1 Recalling of IgA Multigrid and Fast Diagonaliza-
tion Methods

In this section, for completeness, we give a short overview of MG for IgA and the FD
method. For a more comprehensive description of MG we refer, e.g., to [84], [220],
and for applications of Multigrid and Multilevel algorithms in IgA, we refer to [34],
[47] or [65]. Recent results on p-robust MG can be found in [102]. A more detailed
description of FD methods and recent results can be found in [192], [168] and [211].
The origin of this methods dates back to the works in [157] and [13].

129
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6.1.1 Multigrid

The ingredients to setup a MG algorithm are the restrictions and prolongations oper-
ators, the coarse gird solver and the smoother. Let {Vh,l}Ll=1, with Vh,l ⊂ Vh,l+1, l =
1, . . . , L− 1 be a sequence of nested spaces , where Vh,1 is the coarsest and Vh = Vh,L
the finest space. Since the spaces are nested, there exists a natural prolongation op-
erator P : Vl → Vl+1. Based on it, we can define the canonical restriction operators
P T : Vl+1 → Vl as its transposed. As coarse grid solver, we consider a sparse direct
solver on the coarsest level l = 1. The last ingredient is the smoother Sν , where the
Gauss Seidel or damped Jacobi smoother provides a h-robust method. The same holds
true for IgA. However, the condition number of the problem preconditioned by MG
still depends on the B-Spline degree p, unfortunately, in an exponential way. In Algo-
rithm 6, we summarize the MG-algorithm using ν smoothing steps. For the settings
γ = 1 and γ = 2, we obtain the V - and W -cycle, respectively.

Algorithm 6 Multigrid algorithm for solving Ku = f

procedure MGM(K l, ul, f l, l)
if l == 1 then

Solve K1u1 = f 1

else
ûl = Sν(K l, ul, f l)
dl = f l −K lûl

dl−1 = P Tdl

wl−1
0 = 0

for j = 0, . . . , γ do
wl−1
j = MGMγ(K l−1, wl−1

j , dl−1, l − 1)
end for
wl = Pwl−1

Γ

ũl = ûl + wl

ul = Sν(K l, ũl, f l)
end if
return ul

end procedure

One way to obtain a p-robust method is by using a special smoother, e.g., as defined
in [102]. This smoother is based on a stable splitting of the spline space into a large
subspace where a robust inverse inequality holds, and smaller subspaces. For the large
subspace the mass smoother is chosen and for the smaller subspaces direct solvers. The
individual smoothers are then combined by means of the subspace correction approach.
Note, this smoother does not lead to a MG method, which is robust with respect
to the geometrical mapping. By a suitable combination of a forward and backward
Gauss-Seidel smoother and the p-robust smoother, one can reduce the influence of the
geometrical mapping on the number of iterations.
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6.1.2 Fast Diagonalization Method

The FD method is a direct solver for matrices which have a certain tensor-product
structure. However, the mass and stiffness matrix in IgA do not have tensor-product
structure on the physical domain due to the presence of the geometrical mapping.
Provided that the diffusion coefficient α is constant on each patch, these matrices
have tensor-product structure on the parameter domain. Therefore, the FD method
provides a solver on the parameter domain. Hence, it can be used as a preconditioner in
an iterative method for the problem posed on the physical domain. Since, the matrices
from the parameter and physical domain are spectrally equivalent with constants only
depending on the geometrical mapping, the preconditioner is robust with respect to
the degree p and mesh-size h.

For the presentation of the idea, we restrict ourselves to the two-dimensional case
of a symmetric stiffness matrix, extensions to three dimensions and non-symmetric
matrices can be found in [192] and [211]. The stiffness matrix corresponding to an IgA
discretization of the Poisson equation for a two-dimensional domain has the following
structure

K = K1 ⊗M2 +M1 ⊗K2, (6.1)

whereMi andKi are the mass and stiffness matrix along dimension i, respectively. The
main idea is to perform a generalized eigendecomposition of the pairs (Ki,Mi), i = 1
and 2, i.e.,

KiUi = MiUiDi,

with the property that UT
i MiUi = I and Di is diagonal matrix containing the eigen-

values of M−1
i Ki. This decomposition allow us to rewrite

Ki = U−Ti DiU
−1
i and Mi = U−Ti U−1

i for i = 1 and 2. (6.2)

Using (6.2) in (6.1), we can write K as

K = U−T1 D1U
−1
1 ⊗ U−T2 U−1

2 + U−T1 U−1
1 ⊗ U−T2 D2U

−1
2

= (U−T1 ⊗ U−T2 )(D1 ⊗ I + I ⊗D2)(U−1
1 ⊗ U−1

2 ).

Hence, we can represent the inverse K−1 in the following way

K−1 = (U1 ⊗ U2)(D1 ⊗ I + I ⊗D2)−1(UT
1 ⊗ UT

2 ).

Therefore, after the pre-computation of Ui and Di for i = 1 and 2, the algorithm
consists of applying two matrices with tensor-product structure, and a diagonal scaling
with (D1⊗ I+ I⊗D2)−1. The algorithm is summarized in Algorithm7. For a detailed
discussion about the complexity in terms of floating point operations of the FDmethod,
we refer to [192].
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Algorithm 7 Fast Diagonalization method for solving Ku = f on the parameter
domain
procedure FD(u, f)

if generalized eigendecomposition (6.2) has not been computed then
Compute (6.2)

end if
d = (UT

1 ⊗ UT
2 )f

d̃ = (D1 ⊗ I + I ⊗D2)−1d
u = (U1 ⊗ U2)d̃
return u

end procedure

6.2 Incorporating Inexact Solvers in IETI-DP

In this section, we want to investigate the different possibilities to incorporate inexact
solvers into the IETI-DP algorithms. Recalling the IETI-DP algorithm from Sec-
tion 3.2, we have to deal with local Dirichlet problems and local Neumann problems.
Note that linear systems appearing in the application of the matrix F or for construct-
ing the right-hand side require higher accuracy than those in the preconditioner.

6.2.1 Local Dirichlet Problems

We have to solve linear systems with the system matrix K
(k)
II in the application

of S in the preconditioner and when calculating the right-hand side g(k) = f
(k)
B −

K
(k)
IB (K

(k)
II )−1f

(k)
I for k = 1, . . . , N . These linear systems are Dirichlet problems. We

mention that they would have Neumann boundary conditions only if the patch bound-
ary contribute to the Neumann boundary of the whole domain. The right-hand side
g has to be computed very accurately, i.e., at least up to discretization error.

The application of the scaled Dirichlet preconditioner M−1
sD is basically given by the

application of the local Schur complements S(k) := K
(k)
BB −K

(k)
BI (K

(k)
II )−1KIB. Hence,

in each application we have to solve a linear system with the matrix K(k)
II .

One has to be careful when replacing the action of (K(k)
II )−1 by the action of an precon-

ditioner (K̂
(k)
II )−1. The resulting approximation Ŝ(k) is in general not spectrally equiva-

lent to S(k) with constants independent of hk, even if (K̂
(k)
II )−1 has such a property, like

in the Multigrid case. To be more precise, one obtains a factor O(1 + ln(Hk/hk)), see
[79] and [80]. In order to guarantee that the approximation Ŝ(k) has spectral constants
independent of h, we have to apply O(1 + ln(Hk/hk)) Multigrid cycles or, in general,
preconditioned Richardson iterations as in the case of the FD method. Alternatively,
one can use a bounded extension preconditioner, see [82], [81], [78] and [77]. Since
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the number ln(Hk/hk) is usually small in the range of practical applications, a few
Multigrid cycles or preconditioned Richardson iterations are often enough to ensure
that the corresponding inexact scaled Dirichlet preconditioner works well, cf. [121]
and references therein. Finally, we note that the matrix K(k)

II is always symmetric and
positive definite.

6.2.2 Local Neumann Problems

The second class of local problems are Neumann problems. They appear in the con-
struction of the S-orthogonal basis for WΠ and in the application of S∆∆. Let us first
investigate the construction of the basis {φ(k)

j }j for W (k)
Π . Since we look for a nodal

basis, which is S-orthogonal, we have to solve the following linear system[
S(k) C(k)T

C(k) 0

][
φ

(k)
j

µ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }, (6.3)

where e(k)
j ∈ Rn

(k)
Π is the j-th unit vector and the matrix C(k) realizes the n(k)

Π primal
variables associated to the patch Ω(k). This system has to be solved for n(k)

Π right-
hand sides, which is an advantage for direct solvers over iterative solvers because the
expensive factorization must be computed only once. Instead of solving (6.3) directly,
we use same approach as in Section 3.2, solve[

K(k) C(k)T

C(k) 0

][
φ

(k)

j

µ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }, (6.4)

and obtain the desired basis functions by φj = φj|Γ(k) . Note that {φ(k)

j }j is a K-
orthogonal basis. If the patch Ω(k) does not touch the boundary ∂Ω, the upper left
block becomes semi-definite due to the presence of a kernel. We are looking for a way to
use the CG algorithm. As long as there is a trivial kernel, i.e., where ∂Ω(k)∩∂Ω 6= ∅, one
straightforward way would be to use the Bramble-Pasciak conjugate gradient (BPCG)
algorithm or one of its variations, see [28] and [207]. However, these iterative methods
require that the upper left block is positive definite. The remedy is a special pre-
conditioner and a non-standard inner product for the CG algorithm, leading to the
Schöberl-Zulehner (SZ) preconditioner, see [195]. An alternative approach would be
to use the MinRes method, see [178], with a block diagonal preconditioner or GM-
Res, see [191] with a non-symmetric preconditioner. However, numerical experiments
indicated that the use of MinRes leads to an increased number of iterations and over-
all computation time. We also observed an increased overall computation time for
GMRes.

First we give a short outline of the Schöberl-Zulehner preconditioner, see [195] for
a more detailed discussion. Let us consider a general saddle-point matrix of the
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form

K :=

[
A BT

B 0

]
,

where A is a symmetric positive semi-definite matrix and B has full rank. Moreover,
we assume that A is positive definite on ker(B), this guarantees the invertibility of K.
Next, we define the preconditioner

K̂ :=

[
Â BT

B BÂ−1BT − Ĥ

]
,

where Â and Ĥ are symmetric positive definite preconditioners for A and H :=
BÂ−1BT , respectively. The matrix H is often called inexact Schur complement. One
can proof if Â > A and Ĥ < H, then K̂−1K is symmetric and positive definite in the
scalar produced induced by

D :=

[
Â− A 0

0 H − Ĥ

]
.

This already enables the use of the CG algorithm to solve K̂−1Kx = K̂−1y, in the
non-standard scalar product induced by D. Moreover, if one can find constants α > 0
and β > 0 such that A > αÂ and Ĥ < H ≤ βĤ, then one can proof explicit bounds
on the maximal an minimal eigenvalue of K̂−1K, see Theorem 2.2 in [195]. One obtains
then the following bound on the condition number

κ(K̂−1K) ≤ β

α
(1 +

√
1− 1/β)

(√
1− 1/β +

√
5− 1/β

2

)2

.

If the constants α and β are independent of parameters like h or p, then also the
condition number κ.

The SZ preconditioner for (6.4) requires preconditioners K̂(k) and Ĥ(k) for the upper
left block K(k) and its inexact Schur complement H(k) := C(k)(K̂(k))

−1
C(k)T , respec-

tively. It is required that K̂(k) > K(k), which implies that K̂(k) has to be positive
definite. In order to handle also the case where K(k) is singular, we need to set up
the preconditioner based on a regularized matrix K(k)

M := K(k) + αHd
kM̂

(k), where α
is chosen to appropriately and M̂ (k) is the mass matrix on the parameter domain.
Note, we can exploit the tensor-product structure to efficiently assemble the mass ma-
trix M̂ (k). The spectral inequality K̂(k) > K(k) can then be guaranteed by a suitable
scaling of K̂(k). Finally, this provides us with an appropriate preconditioner K̂(k) for
K(k). Secondly, the SZ preconditioner requires that Ĥ(k) < H(k). Since in our case the
number of rows of C(k) is given by n(k)

Π , which is a small number that does not change
during refinement, we calculate the inexact Schur complement exactly. This can be
performed by applying (K̂(k))

−1
to n(k)

Π vectors. Finally, by a suitable scaling, e.g.,
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Ĥ(k) := 0.99H(k), we obtain the desired matrix inequality. Having the preconditioners
K̂(k) and Ĥ(k), we apply CG with the SZ preconditioner to construct the basis for
W

(k)
Π .

The second type of Neumann problem appears in the application of F . We look for a
solution of the system S

(k)
∆∆w

(k)
∆ = f

(k)
∆ , which can be written as[

S(k) C(k)T

C(k) 0

] [
w

(k)
∆

µ(k)

]
=

[
f (k)

0

]
. (6.5)

Certainly, one can use the same method as above. However, we can utilize the fact
that we search for a minimizer of 1

2
(S(k)w(k), w(k))− (w(k), f (k)) in the subspace given

by C(k)w(k) = 0. This solution can be computed by first solving the unconstrained
problem and projecting the minimizer into the subspace using a energy-minimizing
projection. The projection is trivial because the decomposition of W̃ into WΠ and W∆

is S-orthogonal.

Note that the CG algorithm, when applied to a positive semi-definite matrix, stays
in the factor space with respect to the kernel, and computes one of the minimizers.
The solution of the constrained minimization problem is, as outlined above, obtained
by applying the projection. As long as the number of CG iterations is not too large,
numerical instabilities are not observed when applying CG to a positive semi-definite
problem.

The S-orthogonal basis has to be computed very accurate in order to maintain the
orthogonality. Because the equation S(k)

∆∆w
(k)
∆ = f

(k)
∆ appears in the system matrix F ,

its solution also requires an accuracy of at least the discretization error.

Remark 6.1. Since we realize the primal variables by means of constraints, the param-
eter domain matrix K̂(k) corresponding to K(k) in (6.4) has tensor-product structure.
This is an important requirement for the p-robust MG and FD method. Using a basis
transformation to incorporate the primal variables would destroy the tensor-product
structure.

Remark 6.2. The solutions to the problems (6.4) and (6.5) have to be computed up
to a high accuracy. However, we observe numerical instabilities if the used tolerance is
too close at machine precision. Therefore, one has to find a balance between computing
the solution sufficiently accurate and avoiding numerical instabilities. In the numerical
experiments in Section 6.3 the choice 5 · 10−12 for (6.4) and 5 · 10−10 for (6.5) works
well. Nevertheless, this is an issue, which has to be taken into account, when using
inexact variants of IETI-DP.

6.2.3 Different Inexact Formulations

From the discussion above, we deduce four (reasonable) combinations of the IETI-DP
method with direct solvers (D) and inexact solver/preconditioner (I).
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(D-D) This is the classical IETI-DP method, where we use direct solvers everywhere.

(D-I) We use an inexact solver in the scaled preconditioner for the solution of the local
Dirichlet problems and the transformation of the right-hand side, see Section 3.2.
As already mentioned, the required accuracy for computing g̃ has to be of the
order of discretization error.

(I-I) We use the inexact solver for all patch-local problems, i.e., the local Dirichlet
and Neumann problems. This implies that also the calculation of the basis for
W∆ is performed by means of an inexact method, which turns out to be very
costly. Moreover, for each application of F , we have to solve a local Neumann
problem in W∆ with the accuracy in the order of the discretization error.

(I-I-S) To overcome the efficiency problem of applying the inexact solver at each
iteration up to a small precision, we use the saddle-point formulation (3.11)
instead of F . On the one hand, at each iteration step, we only have to apply a
given matrix instead of solving a linear system. On the other hand, we now have
to deal with a saddle-point problem. Moreover, the iteration is not only applied
to the interface dofs, but also to the dofs in the whole domain.

We will always assume that the considered multi-patch domain has only a moderate
number of patches such that the coarse problem can still be handled by a spare direct
solver. For extensions to inexact version for the coarse problem, we refer to, e.g.,
[130].

For the first three methods, we use the CG method to solve Fλ = d as outer iteration.
For the last setting (I-I-S), we have to deal with the saddle-point problem (3.11),
which we solve using the BPCG method. The building blocks for this method are a
preconditioner ˆ̃

K for K̃ and F̂ for the Schur complement F . The construction of ˆ̃
K

follows the same steps as in the previous section, but we only apply either a few MG
cycles or a few iterations of the preconditioned Richardson iteration. Concerning F̂ ,
a good choice is the scaled Dirichlet preconditioner M−1

sD , cf. [130].

6.3 Numerical Experiments

We solve the model problem (2.2) on a two- and three-dimensional computational do-
main. In the two-dimensional case, we use the quarter annulus divided into 32 = 8×4
patches, as illustrated in Figure 6.1(a). The three-dimensional domain is the twisted
quarter annulus, decomposed into 128 = 4 × 4 × 8 patches as presented in Fig-
ure 6.1(b). We consider as primal variables vertex values and edge averages for the two-
dimensional example and only edge averages for the three-dimensional example.

As inexact solver we investigate a p-robust Multigrid method and the Fast Diagonal-
ization method. Regarding the tests using Multigrid, we use a standard MG method
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(a) Quarter annulus
(b) Twisted quarter annulus

Figure 6.1: Illustration of the two- and three-dimensional computational domain.

based on a hierarchy of nested grids keeping p fixed and use a standard Gauss Seidel
(GS) smoother for the examples with polynomial degree p = 2. For the examples with
higher polynomial degree (p = 4 or 7), we have used p = 1 on all grid levels but the
finest grid. This does not yield nested spaces. Thus, we cannot use the canonical
embedding and restriction. Instead, we use L2-projections to realize them. On the
finest grid, we use a MG smoother suitable for high-order IgA, namely a variant of the
subspace-corrected mass smoother proposed and analyzed in [102]. For this smoother,
it was shown that the resulting MG method is robust with respect to both the grid
size and the polynomial degree. However, for p = 1 or 2, standard approaches are
more efficient. Thus, we again use this smoother only for the finest level, while for all
other grid levels we use standard GS smoothers. To archive better results, we have
modified the subspace-corrected mass smoother by incorporating a rank-one approxi-
mation of the geometry transformation. Similarly, we construct the FD method based
on the one-dimensional stiffness and mass matrix in the physical space Ki and Mi for
i = 1, . . . , d, respectively, in order to incorporate some information of the geometrical
mapping in the FD method.

For the outer CG or BPCG iteration, we use a zero initial guess, and the reduction of
the initial residual by the factor 10−6 as stopping criterion. The local problems related
to the calculation of the S-orthogonal basis are solved up to a tolerance of 5 · 10−12.
In case of the (I-I) version, the local Neumann problems (6.5) in W∆ are solved up
to a relative error of 5 · 10−10. The number of steps of the inexact method in the
preconditioner is fixed.

The algorithm is realized with the open source C++ library G+Smo [162], which uses
the linear algebra facilities of the Eigen library [76]. We utilize the PARDISO 5.0.0
Solver [140] for performing the LU factorizations.1 In the following the presented
timings are given in seconds. We note that they include in addition to the setup and
solving time also the time spent for assembling the local matrices. For each row of

1Our code is compiled with the gcc 4.8.3 compiler with optimization flag -O3. The results are
obtain on the RADON1 cluster at Linz, see https://www.ricam.oeaw.ac.at/hpc/. We use a single
core of a node, equipped with 2x Xeon E5-2630v3 “Haswell” CPU (8 Cores, 2.4Ghz, 20MB Cache)
and 128 GB RAM.
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Tables 6.2, 6.6 Tables 6.3, 6.7 Tables 6.4, 6.8 Tables 6.5, 6.9
p = 2 p = 7 p = 2 p = 4 p = 2 p = 7 p = 2 p = 4

2.2 16.8 1.1 20.4 0.5 16.8 0.1 2.4
8.8 67.7 8.4 171.8 2.2 67.0 1.1 20.5
34.8 271.8 65.8 1404.3 9.1 270.5 9.5 167.4
138.7 1081.0 521.9 11513.2 37.8 1085.4 95.8 1375.5
565.4 4328.6 166.8 4381.4

Table 6.1: The time in seconds used for assembling the local matrices. These timings
are included in Table 6.2 to Table 6.9.

p = 2 D-D MG-D MG-MG MG-MG-S
Dofs It. Time It. Time It. Time It. Time

134421 9 9.5 9 7.8 9 12.5 14 14.4
530965 10 45.4 10 37.0 10 54.4 15 90.1
2110485 11 224.1 11 172.4 11 272.5 16 568.6
8415253 11 1005.6 11 762.5 11 1181.4 15 3394.1
33607701 OoM OoM 13 5070 OoM

p = 7 D-D MG-D MG-MG MG-MG-S
Dofs It. Time It. Time It. Time It. Time

45753 10 25.7 10 26.7 10 56.7 14 53.5
155961 11 108.4 11 110.7 11 225.1 15 211.8
572985 12 498.8 12 495.5 12 1048.5 17 1013.8
2193465 13 2384.5 13 2265.4 14 4427.2 18 4344.5
8580153 OoM OoM 15 18484.1 20 19958.6

Table 6.2: Number of outer iterations and timings for the four different formulations
using the quarter annulus, see Figure 6.1(a). GS smoother is used for p = 2 and
p-robust subspace corrected mass smoother for p = 7.

Table 6.2 to Table 6.9, the included assembling times are listed separately in Table 6.1.
Note, the assembling of the local matrices does not depend on the chosen variant and
on the used inexact solver.

6.3.1 Multigrid as Inexact Solver

For the local Dirichlet problems in the scaled Dirichlet preconditioner, we use 2 V-
cycles. The local Neumann problems, which appear in the preconditioner of the (MG-
MG-S) version, are approximately solved by 3 V-cycles. Moreover, the regularization
parameter α is chosen to be 1. In the following, we report on the number of CG
iterations to solve (3.12) and BP-CG iterations for (3.11) and the total time, which
includes the assembling, the IETI-DP setup and solving phase.
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p = 2 D-D MG-D MG-MG MG-MG-S
Dofs It. Time It. Time It. Time It. Time

14079 11 2.6 11 2.5 11 7.6 25 7.2
86975 12 19.3 12 19.1 12 59.1 26 59.1
606015 14 213.2 14 197.8 14 484.0 30 616.5
4513343 OoM 16 2764.4 16 5244.5 35 11657.5
p = 4 D-D MG-D MG-MG MG-MG-S
Dofs It. Time It. Time It. Time It. Time

40095 13 29.5 13 32.8 13 112.5 23 104.8
160863 15 234.5 15 254.2 15 660.0 28 631.4
849375 16 2237.3 17 2356.8 17 5400.0 32 5312.4
5390559 OoM OoM 19 45243.1 37 53378.3

Table 6.3: Number of outer iterations and timings for the four different formulations
using the twisted quarter annulus, see Figure 6.1(b). GS smoother is used for p = 2
and p-robust subspace corrected mass smoother for p = 4.

In Table 6.2, we summarize the results for the two-dimensional domain for p = 2 and
7. We observe that replacing the direct solver in the preconditioner with two MG
V-cycles does not change the number of outer iterations. Moreover, going from the
Schur complement to the saddle-point formulation and using BPCG there, leads only
to a minor increase in the number of outer iterations. In all cases, the logarithmic de-
pendence of the condition number on h is preserved. The advantage of the formulation
using only MG, especially (MG-MG), is its smaller memory footprint, therefore, the
possibility of solving larger systems. However, the setting with the best performance is
(MG-D). Concluding, for small polynomial degrees and using the GS smoother, (MG-
MG) gives reasonable trade off between performance and memory usage and for larger
polynomial degrees, this setting can be still recommended if memory consumption is
an issue.

In the case p = 2, for the inner iterations, we have observed that the CG needed on
average 8 iterations to compute g̃, the calculation of the S-orthogonal basis needed
on average 14 iterations and the solution of (6.5) required on average 10 iterations.
For the second case, p = 7, we needed 9 iterations to compute g̃, 13 iterations for the
calculation of the S-orthogonal basis and 10 iterations for the solutions of (6.5). Here
and in what follows, we have taken the average over the patches, the individual levels
and the individual steps of the outer iteration. We mention that the number of inner
iterations was only varying slightly.

In Table 6.3, we summarize the results for the three-dimensional domain and for p = 2
and 4. We observe that replacing the direct solver in the preconditioner with two
MG V-cycles does not change the number of outer iterations. We further observe
that the results behave similar to the one of the two-dimensional case. However, the
number of iterations almost doubled when using BPCG for (MG-MG-S). In all cases,
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p = 2 D-D MG-D MG-MG MG-MG-S
nΠ N Dofs It. Time It. Time It. Time It. Time
73 32 34453 8 2.4 8 1.8 8 3.8 19 3.7
337 128 138601 9 10.0 9 7.6 9 19.1 13 14.7
1441 512 555985 9 40.4 9 30.7 9 83.1 12 60.5
5953 2048 2227105 8 160.9 8 120.7 8 330.8 11 242.3
24193 8192 8914753 8 722.3 8 489.0 8 1357.8 12 973.2

p = 7 D-D MG-D MG-MG MG-MG-S
nΠ N Dofs It. Time It. Time It. Time It. Time
73 32 45753 10 27.2 10 26.7 10 61.7 20 60.1
337 128 183921 11 110.0 11 108.9 11 268.5 15 234.8
1441 512 737505 11 446.8 11 438.8 11 1111.2 13 943.0
5953 2048 2953665 10 1777.3 10 1729.3 10 4468.4 12 3821.0
24193 8192 11821953 OoM OoM 10 19691.5 11 15392.3

Table 6.4: Number of outer iterations and timings for the four different formulations
having a fixed ratio H/h, using the quarter annulus, see Figure 6.1(a). GS smoother
is used for p = 2 and p-robust subspace corrected mass smoother for p = 7.

the logarithmic dependence of the condition number on h is preserved. The advan-
tage of the formulation using only MG, especially (MG-MG), is its smaller memory
footprint, therefore the possibility of solving larger systems. The best performance is
obtained sometimes by (D-D) and sometimes by (MG-D), where both approaches are
comparable.

Concerning the inner iterations, for p = 2, we need on average 15 CG iterations to
compute g̃, 22 CG iterations to build up each S-orthogonal basis function, and 18 CG
iterations to solve (6.5). In the case of p = 4, we needed on average only 10 iterations
to compute g̃, 14 iterations for the construction of the S-orthogonal basis functions,
and 11 iterations for solving (6.5).

Next, we investigate the weak scalability of the method, i.e., fixing the ratio H/h
and increasing the number of patches N . Note, we introduce a C0 coupling between
the newly introduced patches. We expect constant number of iterations and a linear
increase of the computation time. We first consider the two-dimensional problem. In
Table 6.4, we report on the size of the coarse space nΠ, the number of patches N and
for each method we summarize the number of iterations and computation time. We
observe that the number of iterations and computation time behave as expected for
both considered degrees. The number of inner MG iterations are identical to those
obtained for the test summarized in Table 6.2. Similarly, for the three-dimensional
example, see Table 6.5, we observe the expected behaviour of all the methods with
identical inner iterations to Table 6.3.
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p = 2 D-D MG-D MG-MG MG-MG-S
nΠ N Dofs It. Time It. Time It. Time It. Time
16 16 1539 8 0.2 7 0.24 8 0.5 19 0.4
240 128 14079 11 2.7 11 2.5 11 7.7 25 7.1
2464 1024 120159 12 25.2 12 23.2 12 84.0 27 76.4
22080 8192 992319 12 283.7 12 215.4 12 1030.9 29 709.5

p = 4 D-D MG-D MG-MG MG-MG-S
nΠ N Dofs It. Time It. Time It. Time It. Time
16 16 4563 9 3.3 9 3.5 9 8.0 16 7.5
240 128 40095 13 30.5 13 31.9 13 113.7 25 106.5
2464 1024 335775 14 260.8 14 271.6 14 1168.5 27 1088.8
22080 8192 2747583 14 2259.8 14 2277.8 14 11221.9 26 9941.4

Table 6.5: Number of outer iterations and timings for the four different formulations
having a fixed ratio H/h, using the twisted quarter annulus, see Figure 6.1(b). GS
smoother is used for p = 2 and p-robust subspace corrected mass smoother for p = 4.

6.3.2 Fast Diagonalization Method as Inexact Solver

In this section, we use the FD method as local solver. As already mentioned in Sec-
tion 6.1.2, this method is robust in p and in h, and the condition number of the pre-
conditioned system depends only on the geometrical mapping. For the local Dirichlet
problems in the scaled Dirichlet preconditioner, we use 5 preconditioned Richard-
son steps. The local Neumann problems, which appear in the preconditioner of the
(MG-MG-S) version, are approximately solved by 3 preconditioned Richardson steps.
Moreover, the regularization parameter α is chosen to be 10. In the following, we
report on the number of CG iterations to solve (3.12) and BP-CG iterations for (3.11)
and the total time, which includes the assembling, the IETI-DP setup and solving
phase.

In Table 6.6, we summarize the results for the two-dimensional domain for p = 2 and
7. We observe that results using the FD method behave similar to the one using the
MG method. However, for the case of p = 7, the (FD-FD) and (FD-FD-S) version
can even beat the classical IETI-DP method, where (FD-FD) is the most efficient one.
For the tests with p = 2, the best performance is obtained sometimes by (FD-D).
Concerning the inner iterations, for p = 2, we need on average 9 CG iterations to
compute g̃, 16 CG iterations to build up each S-orthogonal basis function, and 9 CG
iterations to solve (6.5). Similar for the case of p = 7, we need on average only 9
iterations to compute g̃, 16 iterations for the construction of the S-orthogonal basis
functions, and 9 iterations for solving (6.5).

The results for the three-dimensional domain for p = 2 and 4 are summarized in
Table 6.7. In contrast to the two-dimensional case, the best performance is obtained
by either (D-D) or (FD-D), where the results for (FD-D) were only slightly better.
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p = 2 D-D FD-D FD-FD FD-FD-S
Dofs It. Time It. Time It. Time It. Time

134421 9 9.5 9 7.1 9 6.8 12 8.4
530965 10 45.4 10 35.3 10 39.3 14 74.2
2110485 11 224.1 11 167.5 11 213.1 15 497.5
8415253 11 1005.6 13 825.7 13 1218.2 17 3508.9
33607701 OoM OoM 15 7290.5 OoM

p = 7 D-D FD-D FD-FD FD-FD- S
Dofs It. Time It. Time It. Time It. Time

45753 10 25.7 10 23.5 10 22.3 13 22.9
155961 11 108.4 11 97.6 11 89.5 14 92.9
572985 12 498.8 12 430.2 12 395.6 15 431.6
2193465 13 2384.5 14 1971.2 14 1659.4 18 1981.8
8580153 OoM OoM 17 7187.5 20 10648.1

Table 6.6: Number of outer iterations and timings for the four different formulations
using the quarter annulus, see Figure 6.1(a). FD method is used as inexact solver.

p = 2 D-D FD-D FD-FD FD-FD-S
Dofs It. Time It. Time It. Time It. Time

14079 11 2.6 11 2.5 11 3.6 25 4.0
86975 12 19.3 12 17.8 12 22.1 27 28.0
606015 14 213.2 14 180.7 14 180.8 33 398.3
4513343 OoM 17 2586.5 19 2265.7 40 9780.6
p = 4 D-D FD-D FD-FD FD-FD-S
Dofs It. Time It. Time It. Time It. Time

40095 13 29.5 13 28.8 13 36.4 33 39.8
160863 15 234.5 15 226.2 15 262.6 37 280.4
849375 16 2237.3 17 2069.2 19 2481.8 41 2624.8
5390559 OoM OoM 34 21342.2 58 37322.1

Table 6.7: Number of outer iterations and timings for the four different formulations
using the twisted quarter annulus, see Figure 6.1(b). FD method is used as inexact
solver.
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p = 2 D-D FD-D FD-FD FD-FD-S
nΠ N Dofs It. Time It. Time It. Time It. Time
73 32 34453 8 2.4 8 1.7 8 1.6 11 1.8
337 128 138601 9 10.0 9 7.2 9 6.7 11 8.2
1441 512 555985 9 40.4 9 28.9 9 26.8 11 33.3
5953 2048 2227105 8 160.9 9 114.4 8 109.1 11 123.9
24193 8192 8914753 8 722.3 8 497.9 * * 10 497.8

p = 7 D-D FD-D FD-FD FD-FD-S
nΠ N Dofs It. Time It. Time It. Time It. Time
73 32 45753 10 27.2 10 23.7 10 22.2 13 22.7
337 128 183921 11 110.0 11 95.2 11 90.0 13 92.5
1441 512 737505 11 446.8 11 382.9 11 359.6 15 377.2
5953 2048 2953665 10 1777.3 10 1522.7 10 1443.2 13 1486.1
24193 8192 11821953 OoM OoM * * 10 5873.1

Table 6.8: Number of outer iterations and timings for the four different formulations
having a fixed ratio H/h, using the quarter annulus, see Figure 6.1(a). FD method
is used as inexact solver. The * indicate, that no results could be obtained due to
numerical instabilities.

One reason is the more distorted geometry, which leads to a larger number of inner
iterations. However, the pure inexact variants (FD-FD) and (FD-FD-S) still have a
significant memory advantage. Concerning the inner iterations, for p = 2, we need
on average 16 CG iterations to compute g̃, 24 CG iterations to build up each S-
orthogonal basis function, and 17 CG iterations to solve (6.5). In the case of p = 4,
we need on average only 16 iterations to compute g̃, 25 iterations for the construction
of the S-orthogonal basis functions, and 18 iterations for solving (6.5).

As in the previous section, we also investigate the weak scalability of the method
for different polynomial degrees and for the two- and three-dimensional domain. As
mentioned in the previous section, we introduce a C0 coupling between the newly
introduced patches. In Table 6.8, we report on the size of the coarse space nΠ, the
number of patches N and for each method we summarize the number of iterations
and computation time. We observe that the number of iterations and computation
time behave as expected for both considered degrees. The number of inner iterations
are identical to those obtained for the test summarized in Table 6.6. Similarly, for the
three-dimensional example, see Table 6.9, we observe the expected behaviour of all the
methods with identical inner iterations to Table 6.7. However using the FD-FD version
for the last refinement, we observe numerical instabilities and no convergence of the
IETI-DP method, cf. Remark 6.2. These could not be resolved, even by increasing
the tolerance of the iterative methods.
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p = 2 D-D FD-D FD-FD FD-FD-S
nΠ N Dofs It. Time It. Time It. Time It. Time
16 16 1539 8 0.3 8 0.2 8 0.3 19 0.3
240 128 14079 11 2.7 11 2.5 11 3.5 25 4.1
2464 1024 120159 12 25.2 11 22.5 11 35.0 29 43.0
22080 8192 992319 12 283.7 11 209.2 11 370.8 32 395.0

p = 4 D-D FD-D FD-FD FD-FD-S
nΠ N Dofs It. Time It. Time It. Time It. Time
16 16 4563 10 3.4 10 3.1 9 3.6 25 3.6
240 128 40095 13 30.3 13 28.7 13 35.7 32 38.8
2464 1024 335775 14 260.8 14 246.5 14 322.8 35 354.8
22080 8192 2747583 14 2259.8 14 2059.3 14 2983.4 38 3037.1

Table 6.9: Number of outer iterations and timings for the four different formulations
having a fixed ratio H/h, using the twisted quarter annulus, see Figure 6.1(b). FD
method is used as inexact solver.



Chapter 7

IETI-DP for Space-Time
Formulations

Time-dependent parabolic PDEs play an important role in the simulation of vari-
ous physical processes, like heat conduction and diffusion problems or 2d eddy current
problems in electro-magnetics, and they are often given as initial-boundary value prob-
lem (IBVP). In this chapter, we consider the linear parabolic IBVP: find u : Q → R
such that

∂tu−∆u = f in Q, u = 0 on Σ, and u = u0 on Σ0. (7.1)

This IBVP is posed in the space-time cylinder Q = Ω × [0, T ] = Q ∪ Σ ∪ Σ0 ∪ ΣT ,
where Σ := ∂Ω× (0, T ), Σ0 := Ω×{0}, ΣT := Ω×{T}, and Ω is a bounded Lipschitz
domain.

The discretization of such problem is usually either performed by first discretizing in
time by a time-stepping method and then in space by, e.g., finite elements or vice
versa. The former approach is often denoted as Rothe’s method [143] and the latter
one vertical method of lines [213]. Both of the two approaches are sequential in time.
In order to treat such problems on massively parallel computers, new techniques are
required to overcome the sequential structure. There exist different approaches for
parallelization in time. Here, we focus on space-time methods. We refer to [67] for an
overview of different time-parallel methods.

In [146], a time-upwind test functions were used to construct a stable single-patch
discretization scheme in the IgA framework. Here, we extend this approach to multi-
ple patches in time, where each space-time patch Qn is given as space-time slabs, i.e.,
Qn := Q(n) := Ω × (tn−1, tn) with an appropriate decomposition 0 = t0 < t1 < . . . <
tN = T of the time interval [0, T ]. A discontinuous Galerkin (dG) approach is used
for the coupling of the space-time-slabs. The final huge linear system Lhuh = fh is
solved by the space-time MG method introduced in [68], where we develop robust and
parallelizeable smoothers. Their construction is based generalized eigendecomposition
to decouple the space-time problem into a series of spatial problems, where we use

145
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ideas from [211] and [192] as used for the FD method. We propose and analyze pre-
conditioners based on the work in [237] for the resulting symmetric indefinite problems
corresponding to complex eigenvalues.

In Section 7.1 we introduce the dG space-time formulation of (7.1) on time-slabs, state
results on exists, uniqueness and discretization error estimates, and discuss the issue of
fast assembly. The main part of this chapter is Section 7.2, where we develop efficient
solvers for the discrete problem. First we give a short introduction to space-time MG
in Section 7.2.1 and continue with the development of efficient solvers, which are used
inside the MG algorithm in Section 7.2.2. After a short discussion of the use of IETI-
DP as additional space-parallel solver in Section 7.2.6, we conclude this chapter with
numerical experiments in Section 7.3.

7.1 Continuous and Discrete Space-Time Formula-
tion

Let J = (0, T ) be the time interval with some final time T > 0. For later use, we define
the space-time cylinder Q = Ω×J and its boundary parts Σ = ∂Ω×J , ΣT = Ω×{T}
and Σ0 = Ω×{0} such that ∂Q = Σ∪Σ0 ∪ΣT . According to the definition of ∂αx , we
now define the spatial gradient ∇xv = (∂x1v, . . . , ∂xdv). Let ` and m be non-negative
integers. For functions defined in the space-time cylinder Q, we define the Sobolev
spaces

H`,m(Q) = {v ∈ L2(Q) : ∂αx v ∈ L2(Q) for 0 ≤ |α| ≤ `, and ∂itv ∈ L2(Q), i = 0, . . . ,m},

where ∂t = ∂/∂t, and, in particular, the subspaces

H1,0
0 (Q) ={v ∈ L2(Q) : ∇xv ∈ [L2(Q)]d, v = 0 onΣ} and

H1,1
0,0̄

(Q) ={v ∈ L2(Q) : ∇xv ∈ [L2(Q)]d, ∂tv ∈ L2(Q), v = 0 onΣ, v = 0 onΣT}.

We equip the above spaces with the norms and semi-norms

‖v‖H`,m(Q) =
( ∑
|α|≤`

‖∂(α1,...,αd)
x v‖2

L2(Q) +
m∑

m0=0

‖∂m0
t v‖2

L2(Q)

) 1
2

and
|v|H`,m(Q) =

( ∑
|α|=`

‖∂(α1,...,αd)
x v‖2

L2(Q) + ‖∂mt v‖2
L2(Q)

) 1
2 ,

respectively.

Using the standard procedure and integration by parts with respect to both x and
t, we can easily derive the following space-time variational formulation of (7.1): find
u ∈ H1,0

0 (Q) such that

a(u, v) = l(v) for all v ∈ H1,1
0,0̄

(Q), (7.2)
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1

0

Figure 7.1: Decomposition of the space-time domain Q into time-slabs Qn.

with the bilinear form

a(u, v) = −
∫
Q

u(x, t)∂tv(x, t) dx dt+

∫
Q

∇xu(x, t) · ∇xv(x, t) dx dt

and the linear form

l(v) =

∫
Q

f(x, t)v(x, t) dx dt+

∫
Ω

u0(x)v(x, 0) dx,

where the source f ∈ L2(Q) and the initial conditions u0 ∈ L2(Ω) are given.

For simplicity, we only consider homogeneous Dirichlet boundary conditions on Σ.
However, the method presented here can easily be generalized to other classes of
boundary conditions. The space-time variational formulation (7.2) has a unique solu-
tion, see, e.g, [141] and [142], where one can also find a priori estimates and regularity
results.

Assumption 6. We assume that the solution u of (7.2) belongs to V = H1,0
0 (Q) ∩

H`,m(Q) with some ` ≥ 2 and m ≥ 1.

We describe the space-time cylinder Q as a union of non-overlapping time patches
Q1, Q2,. . . ,QN . We consider a partition 0 = t0 < t1 < . . . < tN = T of the time
interval J = [0, T ], and denote the sub-intervals by Jn = (tn−1, tn). We now define the
time patches Qn = Ω × Jn and the faces Σn = Qn+1 ∩ Qn = Ω × {tn} between the
time patches, where we identify ΣT and ΣN . In that way, we have the decomposition
Q = ∪Nn=1Qn, where each space-time cylinder Qn has a geometrical mapping Gn : Q̂ :=
[0, 1]d+1 → Qn := Ω × Jn. To keep the notation simple, in what follows, we will use
the sup-index n to denote the restrictions to Qn, e.g., un := u|Qn . An illustration is
given in Figure 7.1.

Remark 7.1. We note that the spatial domain Ω can also be a multi-patch domain.
This leads to a representation of Qn as union of non-overlapping space-time patches
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Qn,k, k = 1, . . . , K, i.e., Qn = ∪Kk=1Qn,k. The corresponding bases are then coupled in
a conforming way.

We denote the global discontinuous B-Spline space and the local continuous patch-wise
B-Spline spaces by

V0h = {vh ∈ L2(Q) : vh|Qn ∈ V n
h , forn = 1, . . . , N, and vh|Σ = 0} (7.3)

and
V n

0h = {vh ∈ V n
h , forn = 1, . . . , N, and vh|Σ = 0}, (7.4)

respectively. Notice that vh ∈ V0h is in general discontinuous across Σn. We introduce
the notations

vnh,+ = lim
ε→0+

vh(tn + ε), vnh,− = lim
ε→0−

vh(tn + ε), JvhKn = vnh,+ − vnh,−, JvhK0 = v0
h,+,

where JvhKn denotes the jump of vh across Σn for n ≥ 1, and JvhK0 = v0
h,+ denotes

the trace of vh on Σ0. For a smooth function u, we obviously have JuKn = un+ − un− =
0 forn ≥ 1, and JuK0 = u|Σ0 .

7.1.1 Stable Multi-Patch Space-Time dG-IgA Discretization

Let us now consider the space-time slab Qn, and let us denote the outer normal to
∂Qn by n = (n1, . . . , nd, nd+1) = (nx, nt). For the time being, we assume that un−1

is known. Let vnh ∈ V n
0h and wnh = vnh + θn hn∂tv

n
h with some positive parameter θn,

which will be defined later. We note that wnh
∣∣
Σ

= 0. Multiplying ∂tu−∆u = f by wnh ,
integrating over Qn, and applying integration by parts, we arrive at the variational
identity ∫

Qn

(∂t u (vnh + θn hn∂tv
n
h) +∇x u · ∇x v

n
h + θn hn∇xu · ∇x∂tv

n
h) dx dt

−
∫
∂Qn

nx · ∇xu(vnh + θn hn∂tv
n
h) dx+

∫
Σn−1

un−1
+ vn−1

h,+ dx

=

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σn−1

un−1
− vn−1

h,+ dx

for n = 1, . . . , N , where we used that un−1
− = un−1

+ = un−1 on every Σn−1. Furthermore,
using nx|Σn = 0 and wh = 0 on Σ, we have

aQn(u, vh) :=

∫
Qn

(∂t u (vnh + θn hn∂tv
n
h) +∇x u · ∇x v

n
h + θn hn∇xu · ∇x∂tv

n
h) dx dt

+

∫
Σn−1

JuKn−1 vn−1
h,+ dx =

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt,
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for all n = 2, . . . , N , and

aQ1(u, vh) :=

∫
Q1

(∂t u (v1
h + θ1 h1∂tv

1
h) +∇x u · ∇x v

1
h + θ1 h1∇xu · ∇x∂tv

1
h) dx dt

+

∫
Σ0

JuK0 v0
h,+ dx =

∫
Q1

f (v1
h + θ1 h1∂tv

1
h) dx dt+

∫
Σ0

u0 v
0
h,+ dx.

Summing over all Qn, we conclude that

ah(u, vh) = lh(vh), ∀vh ∈ V0h, (7.5)

where

ah(u, vh) =
N∑
n=1

aQn(u, vh)

and

lh(vh) =
N∑
n=1

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σ0

u0 v
0
h,+ dx.

Now, the space-time dG IgA variational scheme for (7.1) reads as follows: find uh ∈ V0h

such that
ah(uh, vh) = lh(vh), ∀vh ∈ V0h. (7.6)

Motivated by the definition of the bilinear form ah(·, ·) in (7.6), we introduce the
mesh-dependent dG norm

‖v‖dG :=
( N∑
n=1

(
‖∇xv‖2

L2(Qn) + θn hn ‖∂tv‖2
L2(Qn) +

1

2
‖JvKn−1‖2

L2(Σn−1)

)
+

1

2
‖v‖2

L2(ΣN )

) 1
2
.

In the following, we recall some important properties of the IgA scheme (7.6) respec-
tively the bilinear form ah(·, ·). For the proofs, we refer to [95].

Lemma 7.2. The bilinear form ah(·, ·), defined in (7.6), is V0h-elliptic, i.e.,

ah(vh, vh) ≥ Ce‖vh‖2
dG, for vh ∈ V0h, (7.7)

where Ce = 0.5 for θn ≤ C−2
inv,0, with the positive, hn-independent constant Cinv,0 from

the inverse inequality

‖vh‖2
L2(Σn−1) ≤ Cinv,0h

−1
n ‖vh‖2

L2(Qn)

that holds for all vh ∈ V n
h , n = 1, . . . , N .

The V0h-ellipticity of the bilinear form ah(·, ·) implies that there exists a unique solution
to (7.5). In order to obtain a priori error estimates, we introduce the space V0h,∗ =
V + V0h endowed with the norm

‖v‖dG,∗ :=
(
‖v‖2

dG +
N∑
n=1

(θnhn)−1‖v‖2
L2(Qn) +

N∑
n=2

‖vn−1
− ‖2

L2(Σn−1)

) 1
2
. (7.8)



150 CHAPTER 7. IETI-DP FOR SPACE-TIME FORMULATIONS

Lemma 7.3. The boundedness inequality

|ah(u, vh)| ≤ Cb‖u‖dG,∗‖vh‖dG
holds for all u ∈ V0h,∗ and vh ∈ V0h, where the constant Cb = max(Cinv,1 θmax, 2), with
θmax = maxn{θn} ≤ C−2

inv,0 and the positive, hn-independent constant Cinv,1 from the
inverse inequalities

‖∂t∂xivh‖2
L2(Qn) ≤ Cinv,1h

−2
n ‖∂xivh‖2

L2(Qn)

that holds for all vh ∈ V n
h , n = 1, . . . , N , i = 1, . . . , d.

Theorem 7.4. Let u and uh solve (7.2) and (7.6), respectively. Under the regularity
Assumption 6, there exists a positive generic constant C, which is independent of
h = max(hn), such that

‖u− uh‖dG ≤ C(h`−1 + hm−
1
2 ) ‖u‖H`,m(Q). (7.9)

provided that p+ 1 ≥ max(l,m).

Remark 7.5. We remark that, for the case of highly smooth solutions, i.e., p + 1 ≤
min(`,m), estimate (7.9) takes the form

‖u− uh‖dG ≤ C hp ‖u‖Hp+1,p+1(Q).

7.1.2 Efficient Matrix Assembly

We recall the discrete variational problem given in (7.6), where we want to find uh ∈ V0h

such that

ah(uh, vh) = 〈Fh, vh〉, ∀vh ∈ V0h,

with V0h := V 1
0h × . . .× V N

0h and

ah(uh, vh) =
N∑
n=1

aQn(uh, vh).

The local bilinear form for each space-time slab Qn is given by

aQn(uh, vh) =

∫
Qn

∂t u
n
h (vnh + θn hn∂tv

n
h) +∇x u

n
h · ∇x(v

n
h + θn hn∂tv

n
h) dx dt

+

∫
Σn−1

JuhKn−1 vn−1
h,+ ds

=

∫
Qn

∂t u
n
h (vnh + θn hn∂tv

n
h) +∇x u

n
h · ∇x(v

n
h + θn hn∂tv

n
h) dx dt

+

∫
Σn−1

un−1
h,+ vn−1

h,+ ds−
∫

Σn−1

un−1
h,− v

n−1
h,+ ds

=: bQn(unh, v
n
h)−

∫
Σn−1

un−1
h,− v

n−1
h,+ ds,
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where n = 1, . . . , N . For the local spaces V n
0h defined by (7.4), we now introduce the

simpler notation ϕnj for the B-Spline basis functions such that

V n
0h = span{ϕnj }Nnj=1

for n = 1, . . . , N . Once the basis is chosen, from the IgA variational scheme (7.6), we
immediately obtain the linear system

Lhuh :=


A1

−B2 A2

. . . . . .
−BN AN



u1

u2
...
uN

 =


f 1

f 2
...
fN

 =: fh, (7.10)

with the matrices

An[i, j] := bQn(ϕnj , ϕ
n
i ) for i, j = 1, . . . , Nn

on the diagonal for n = 1, . . . , N , and the matrices

Bn[i, k] :=

∫
Σn−1

ϕn−1
k,− ϕ

n−1
i,+ ds for k = 1, . . . , Nn−1 and i = 1, . . . , Nn

on the lower off diagonal for n = 2, . . . , N . Moreover, for n = 1, . . . , N the right hand
sides are given by

fn[i] := lh(ϕ
n
i ), i = 1, . . . , Nn.

If the geometrical mappings Gn : Q̂ → Qn, n = 1, . . . , N , preserve the tensor product
structure of the IgA basis functions ϕni , we can use this information to save assembling
time and storage costs for the linear system (7.10). In this case, we can write the basis
functions ϕni in the form

ϕni (x, t) = φnix(x)ψnit(t) with ix ∈ {1, . . . , Nn,x} and it ∈ {1, . . . , Nn,t},

where Nn = Nn,xNn,t. Using this representation, we can write the matricesAn as

An = Kn,t ⊗Mn,x +Mn,t ⊗Kn,x, n = 1, . . . , N (7.11)

with the standard mass and stiffness matrices with respect to space

Mn,x[ix, jx] :=

∫
Ω

φnjxφ
n
ix dx, Kn,x[ix, jx] :=

∫
Ω

∇xφ
n
jx · ∇xφ

n
ix dx,

where ix, jx = 1, . . . , Nn,x, and the corresponding matrices with respect to time

Kn,t[it, jt] :=

∫ tn

tn−1

∂tψ
n
jt(ψ

n
it + θnhn∂tψ

n
it) dt+ ψnjt(tn−1)ψnit(tn−1),

Mn,t[it, jt] :=

∫ tn

tn−1

ψnjt(ψ
n
it + θnhn∂tψ

n
it) dt,

(7.12)
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with it, jt = 1, . . . , Nn,t. The matrices on the off diagonal Bn, n = 2, . . . , N , can be
written in the form

Bn := Nn,t ⊗ M̃n,x,

with the matrices

M̃n,x[ix, kx] :=

∫
Ω

φn−1
kx

φnix dx and Nn,t[it, kt] := ψn−1
kt

(tn−1)ψnit(tn−1),

where ix = 1, . . . , Nn,x, kx = 1, . . . , Nn−1,x, it = 1, . . . , Nn,t and kt = 1, . . . , Nn−1,t.

7.2 Solvers for Space-Time Problems

This section aims at the development of efficient solvers for the huge space-time system
(7.10). Our new solver is based on the time-parallel Multigrid method proposed in
[68], see also the PhD thesis [170]. The key point in realizing the method efficiently is
the application of the smoother, which is the most costly part of the algorithm. The
goal is to utilize the structure of the involved matrix A−1

n , which then allows for a
faster application.

Remark 7.6. The approach presented in this section is not restricted to a continuous
Galerkin discretization for the spatial domains. The approach immediately extends to
a spatial coupling of the interface dofs via dG terms as in Section 2.3.2.

7.2.1 Space-time Multigrid

In this section, we give an review of the time parallel Multigrid from [170]. As already
mentioned in Section 6.1.1, Multigrid consists of three main ingredients: the coarse
grid solver, the smoother, and the prolongation/restriction operators. The coarse
grid solver will be either a direct solver or an iterative solver based on the IETI-DP
method.

Concerning the restriction and prolongation operator it is advantageous to consider
coarsening in space and in time separately. The prolongation is then just defined
as the transposed operator. The coarsening in space is performed as described in
Section 6.1.1, whereas the coarsening in time realized by combining two successive
time-slabs to a single time-slab, see the illustration in Figure 7.2. For simplicity, we
assume that the considered basis is identical on each patch, which greatly simplifies the
calculation of the restriction operator. Certainly, it is possible to extend the method
the case, where the bases are not identical. In the easiest version, we only perform
coarsening in time, which is proven to converge without restrictions on the mesh-size
h, the parameter θ or polynomial degree p. The drawback of this strategy is that
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Figure 7.2: Illustration of time coarsening: two consecutive time-slabs are merged into
a single time-slab.

on the coarsest level, the number of dofs may be still be quite large, especially if
we consider relatively fine meshes for three-dimensional spatial domains. The more
advanced strategy is to combine coarsening in space and time, but this has to be
performed in a suitable way. In [170], for a one dimensional spatial domain, it is
shown that the factor τLh−2

L must be large enough in order to guarantee convergence,
where τL is the mesh-size on the time-slab on level L in time direction and hL the
corresponding spatial mesh size on level L. Hence, we have to fulfil an inequality of
the form τLh

−2
L > ccritical, where the threshold ccritical is independent of h, τ and L.

Based on this inequality, we have to decide at each time-level, whether we perform a
full space-time coarsening or, only a coarsening in time.

In this work, we are mostly interested in the smoother, that is an (inexact) damped
block Jacobi smoother of the form, i.e.,

uk+1
h = ukh + ωD−1

h

[
fh −Lhukh

]
for k = 1, 2, . . . .

We use the block diagonal matrix Dh := diag{An}Nn=1 and the damping parameter
ω = 0.5, see also [68]. The application of the smoother can be accelerated by replacing
the inverse of Dh by some approximation, i.e., an approximation Â

−1

n to A−1
n . The

aim of this work is to find a procedure, that allows us an efficient application of Â
−1

n

to a vector. In order to achieve this, we will heavily exploiting the special tensor
structure of An.

7.2.2 General Construction of an Approximation for A−1
n

In this section, for notational simplicity, we drop the subscript n when considering
matrices and vectors defined on the space-time-slab Qn. We recall the structure of the
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matrix A,

A = Kt ⊗Mx +M t ⊗Kx,

where the matricesMx andKx are symmetric and positive definite, while the matrices
Kt and M t are non-symmetric, cf. (7.11). The matrices Mx and Kx correspond
to a d-dimensional spatial problem, whereas Kt and M t are only related to a one
dimensional problem at one time-slab. Hence, the size of the latter two matrices is
much smaller than the first two. The idea is to use already available preconditioners
for symmetric and positive definite problems of the form Kx + γMx with γ > 0 to
construct efficient and robust preconditioners for A−1. The ideas of this section are
based on the results developed in [211] and [192].

We will achieve this by performing a decomposition ofM−1
t Kt using one of the follow-

ing three methods: Diagonalization, Complex-Schur decomposition, Real-Schur decom-
position. Using these techniques, we obtain a decomposition of the form M−1

t Kt =
X−1ZX, where the entries of the matrices X and Z are complex or real numbers,
and Z has some sort of “simple” structure. A detailed specification will be presented
in Section 7.2.3, Section 7.2.4 and Section 7.2.5.

By defining Y := (M tX)−1, we obtain the following representations

M t = Y −1X−1 and Kt = Y −1ZX−1.

Now we can rewrite A in the form

A = Kt ⊗Mx +M t ⊗Kx

= (Y −1ZX−1)⊗Mx + (Y −1X−1)⊗Kx

= (Y −1 ⊗ I) · (Z ⊗Mx + I ⊗Kx) · (X−1 ⊗ I).

Using the well-known fact that (Y −1 ⊗ I)−1 = Y ⊗ I and (X−1 ⊗ I)−1 = X ⊗ I, we
obtain

A−1 = (X ⊗ I) · (Z ⊗Mx + I ⊗Kx)
−1 · (Y ⊗ I). (7.13)

In the subsequent subsections, we will investigate the structure of the matrix (Z ⊗
Mx + I ⊗Kx) for each of the three decomposition methods, and we will look for
efficient ways of (approximate) inversion.

In the following, the generalized eigenvalues λi := αi + ıβi ∈ C of (Kt,M t), i.e.,

Ktzi = λiM tzi, (7.14)

with the eigenvector z := x + ıy, will play an important role for constructing an
efficient application of (7.13). First of all, for 0 < θn ≤ C−2

inv, where Cinv denotes the
constant from the inverse inequality

|v(tn−1)|2 ≤ C2
invh

−1
n ‖v‖2

L2(tn−1,tn) ∀v ↔ v ∈ RNt , (7.15)

we have the positiveness of the matrices Kt and M t, see also [225] for an explicit
formula of Cinv = Cinv(p) in the case of polynomials of the degree p.
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Lemma 7.7. Let Kt and M t be given by (7.12), and let the constant Cinv > 0 be
defined according to (7.15). If θn > 0, then the matrix Kt is positive definite, i.e.,
vTKtv > 0 for all v ∈ RNt \ {0}, and if θn < 2C−2

inv, then the matrix M t is positive
definite.

Proof. We first consider the matrix Kt. We can write vTKtv in the following way:

vTKtv = (Ktv,v) =

∫ tn

tn−1

(v′(t)v(t) + θnhn(v′(t))2) dt+ |v(tn−1)|2

= θnhn‖v′‖2
L2(tn−1,tn) +

1

2

∫ tn

tn−1

(v2)′(t) dt+ |v(tn−1)|2

= θnhn‖v′‖2
L2(tn−1,tn) +

1

2
|v(tn)|2 − 1

2
|v(tn−1)|2 + |v(tn−1)|2

= θnhn‖v′‖2
L2(tn−1,tn) +

1

2
(|v(tn)|2 + |v(tn−1)|2) > 0.

for all v ↔ v ∈ RNt \ {0}. Using (7.15), we similarly obtain

vTM tv = (M tv,v) =

∫ tn

tn−1

(v(t)2 + θnhnv
′(t)v(t)) dt

= ‖v‖2
L2(tn−1,tn) +

1

2
θnhn(|v(tn)|2 − |v(tn−1)|2)

≥
(

1− C2
invθn
2

)
‖v‖2

L2(tn−1,tn) +
1

2
θnhn|v(tn)|2 > 0.

for all v ↔ v ∈ RNt \ {0}.

Next we are going to investigate the generalized eigenvalues in (7.14). More precisely,
we want to find conditions under which the real part α is positive. However, for a
generalized eigenvalue problem Az = λBz, this does not follow from the positivity of
A and B as following example shows.

Example 1. Let the matrices A and B be given by

A =

[
5 −2
13 18

]
and B =

[
4 10
−10 9

]
.

For the spectra, we have σ(A) = {9± 2
√

5ı} and σ(B) = {13
2
± 5
√

15ı}. However, the
generalized eigenvalues are σ(B−1A) = {−103

272
±
√

4435ı}.

Let z be the eigenvector to the eigenvalue λ = α+ıβ, i.e., (A−λB)z = 0. Multiplying
from the left with (x− ıy)T yields

(x− ıy)T (A− (α + ıβ)B)(x+ ıy) = 0.
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Separating the real and imaginary part, we obtain

α(xTBx+ yTBy)− β(xT (B −BT )y) = xTAx+ yTAy

α(xT (B −BT )y) + β(xTBx+ yTBy) = xT (A−AT )y.
(7.16)

Introducing the abbreviations a := xTAx+yTAy, b := xTBx+yTBy, c := xT (B−
BT )y and d := xT (A−AT )y, we can rewrite this system in the compact form[

b −c
c b

] [
α
β

]
=

[
a
d

]
,

and α is then given by the formula

α =
1

b2 + c2
(ab+ cd). (7.17)

We can easily observe the statements of the following lemma.

Lemma 7.8. Let A and B be positive definite matrices, then the following statements
hold:

1. a > 0 and b > 0

2. If β = 0, i.e., the eigenvalue λ ∈ R, then λ = α > 0.

3. If either A or B are symmetric, then α > 0.

If A is only non-negative, then these inequalities hold with ≥ instead of >.

Proof. The positivity of a and b immediately follows from the definition. If the eigen-
value λ is real, i.e., β = 0, we obtain from the first equation of (7.16) that α = a/b > 0.
If either A or B is symmetric, then either d or c is zero. Hence, by (7.17), α is posi-
tive.

Let us now consider the special case ofA = Kt andB = M t. For notational simplicity
we consider the interval [0, T ]. First we observe that

c = xT (B −BT )y = θh

∫ T

0

y′(t)x(t)− x′(t)y(t) dt

d = xT (A−AT )y =

∫ T

0

x′(t)y(t)− y′(t)x(t) dt.

Hence, it follows that c = −θhd. This relation leads to the following formula for
α:

α =
1

b2 + c2
(ab− θhd2). (7.18)
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The problem then reduces to check the relation ab − θhd2 > 0, which then reads
as

(xTAx+ yTAy)(xTBx+ yTBy)− θh(xT (A−AT )y)2 > 0, (7.19)

for the eigenvector z = x+ ıy corresponding to λ = α+ ıβ. Rewriting (7.19) in terms
of functions, we get the relation(

θnhn‖x′‖2 +
1

2
(|x(T )|2 + |x(0)|2) + θnhn‖y′‖2 +

1

2
(|y(T )|2 + |y(0)|2)

)
·
(
‖x‖2 +

1

2
θnhn(|x(T )|2 − |x(0)|2) + ‖y‖2 +

1

2
θnhn(|y(T )|2 − |y(0)|2)

)
− θh

(∫ T

0

x′(t)y(t)− y′(t)x(t) dt

)2

> 0

Unfortunately, in this work, we cannot give a complete characterization of the condi-
tions under which the last inequality holds.

Let us consider the special case θ = 0. First of all, we note that vTKtv = 1
2
(|v(tn−1)|2+

|v(tn)|2), which then only defines a semi-norm. Hence, discrete coercivity is not valid.
Therefore, this case is not covered by the analysis presented in [95]. For its analysis, we
refer to [206], where an inf-sup condition and error estimates are proven. The matrix
M t is symmetric and vTM tv = ‖v‖2

L2 . From this fact, we can deduce the following
statement by means of Lemma 7.8:

Proposition 7.9. Let Kt and M t be as defined above with θ = 0. Then α ≥ 0.

Remark 7.10. In the condition number analysis of the following subsections, we con-
sider matrices of the form Kx + αMx, which are required to be positive definite.
Therefore, the positivity of α can be relaxed in the case that |ΓD| > 0.

Remark 7.11. A more detailed investigation of (7.16) shows that

α = 0⇐⇒ x(0) = x(T ) = y(0) = y(T ) = 0, (7.20)

for the eigenvector z = x+ ıy corresponding to α + ıβ.

For the case p = 1, we an even show that, for an eigenvector corresponding to an
purely imaginary eigenvalue, the property x(0) = x(T ) = y(0) = y(T ) = 0 cannot
hold. Considering a uniform knot vector in [0, 1] with B-Splines of degree p = 1 and
Nt ≥ 3, it holds

Kt =
1

2



1 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0 1
−1 1


and M t = Cn



2 1
1 4 1

. . . . . . . . .
1 4 1

1 4 1
1 2


,
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where Cn > 0 depends on Nt. Rewriting Ktz = ıβM tz as recurrence relation for
z = [z1, z2, . . . , zNt−1, zNt ], we obtain

z1 + z2 = ıβ(2z1 + z2),

−zi−1 + zi+1 = ıβ(zi−1 + 4zi + zi+1) i = 2, . . . , Nt − 1,

−zNt−1 + zNt = ıβ(zNt−1 + 2zNt),

(7.21)

where we put the real number Cn and the 1/2 in front of Kt into the eigenvalue ıβ. In
order to ensure that z = [0, z2, . . . , zNt−1, 0] is an eigenvector, it must fulfil the relation

z2 = ıβz2 ⇔ (1− ıβ)z2 = 0,

which results from the first line of (7.21). Since (1− ıβ) cannot be zero, it follows that
z2 = 0. Considering now the second line of (7.21) and assuming z1 = . . . = zj = 0,
we observe that

zj+1 = ıβzj+1 ⇔ (1− ıβ)zj+1 = 0,

for i = j. Therefore, zj+1 = 0. By induction, it follows that z = 0. Hence, it cannot
be an eigenvector.

In the case of p > 1, the matrices Kt and M t have more than one off diagonal and
such a relation would not follow so easily. Numerical experiments in Section 7.3.2
indicate that the real part of λ is positive for the case p > 1 too.

Remark 7.12. Let us consider the case |ΓD| > 0. From Remark 7.10, Proposition 7.9
and the continuous dependence of α on θ, we obtain that Kx + αMx must be positive
definite for sufficiently small θ.

Remark 7.13. Numerical experiments performed for various values of θ, p and hn
in Section 7.3.2 indicate that the generalized eigenvalues λi have a positive real part
α provided that the real part of the eigenvalues of M t is positive. Moreover, in the
practical implementation, one has to compute the eigenvalues λi anyway. Therefore,
we always have an a-posteriori control on the positivity of α. If it happens that α ≤ 0,
than we have to use a smaller θ.

7.2.3 Diagonalization

If the matrix M−1
t Kt is diagonalizable, the eigenvalue decomposition allows us to

write

M−1
t Kt = X−1DX, (7.22)

whereD = diag(λi), λi ∈ C, is a diagonal matrix with possibly complex eigenvalues on
the diagonal, andX ∈ CNt×Nt denotes the matrix of the possibly complex eigenvectors.
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Due to the fact that the matrix M−1
t Kt is non-symmetric, the eigenvectors do not

form an orthogonal basis, i.e. X−1 6= X∗. An efficient calculation can be performed
by means of solving the generalized eigenvalue problem Ktx = λM tx.

Thanks to (7.22), the matrix (Z ⊗Mx + I ⊗ Kx)
−1 from (7.13) then takes the

form

(Z ⊗Mx + I ⊗Kx)
−1 = (D ⊗Mx + I ⊗Kx)

−1 = diagi=1,...,Nt((Kx + λiMx)
−1).

Therefore, only Nt problems of the form (Kx+λiMx) have to be solved, independently
of each other. We have to distinguish two cases: the first case where the eigenvalue λi
is a positive real number, and the second one where λi is a complex number.

In the first case, we consider λi = αi ∈ R+. In this case the matrix Kx + λiMx is
symmetric and positive definite. Linear algebraic systems with a SPD system matrix
Kx + λiMx can efficiently be solved by different robust solution strategies like Multi-
grid [103], [204], [102], [47], Domain Decomposition type methods [90], [23], [18] or
Fast Diagonalization type methods [192], [211].

The second case, where λi = α + ıβ ∈ C with α, β ∈ R, α > 0, is more difficult to
handle. We note that (Kx+λiMx)

∗ 6= Kx+λiMx. Separating the real and imaginary
parts, we can rewrite the complex system (Kx + λiMx)z = h as a real system with
a real block system matrix of twice size.

(Kx + λiMx)z = h

⇐⇒
[
Kx + αiMx −βMx

βMx Kx + αiMx

] [
x
y

]
=

[
f
g

]
⇐⇒

[
Kx + αiMx βiMx

βiMx −(Kx + αiMx)

]
︸ ︷︷ ︸

=:Ai

[
x
−y

]
=

[
f
g

]
,

where z = x + ıy and h = f + ıg. The matrix Ai ∈ R2Nx×2Nx is symmetric, but
indefinite. We are now looking for an robust preconditioner for Ai. In order to
construct such a preconditioner, we use operator interpolation technique, see, e.g.,
[237], [27] and [1]. We follow the presentation in [229]. First, we need the definition of
the geometric mean of two operators and the general operator interpolation theorem,
see Definition. 2.28 and Theorem. 2.29 in [229] and references therein.

Definition 7.14. Let A and B be real, symmetric and positive definite matrices. We
define the geometric mean of A and B by the relation

[A,B]1/2 = A1/2
(
A−1/2BA−1/2

)1/2
A1/2.

Moreover, for any ϑ ∈ [0, 1], we define the symmetric and positive definite matrix by

[A,B]ϑ = A1/2
(
A−1/2BA−1/2

)ϑ
A1/2.
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Theorem 7.15. Let A : Rn → Rn such that the inequalities

c0‖u‖X0 ≤ ‖Au‖Y0 ≤ c0‖u‖X0 and c1‖u‖X1 ≤ ‖Au‖Y1 ≤ c1‖u‖X1 ∀u ∈ Rn

hold, where the linear vector spaces Xj = Rn and Yj = Rn with j ∈ {0, 1} are equipped
with the norms ‖ · ‖Xj and ‖ · ‖Yj , which are associated to the inner products

(u,v)Xj = (M ju,v)`2 and (u,v)Yj = (N ju,v)`2 ,

given by the symmetric and positive definite matrices M 0,M 1,N 0 and N 1. Then,
for Xϑ = [X0, X1]ϑ and Yϑ = [Y0, Y1]ϑ, with ϑ ∈ [0, 1], the inequalities

c1−ϑ
0 cϑ1‖u‖Xϑ ≤ ‖Au‖Yϑ ≤ c1−ϑ

0 cϑ1‖u‖Xϑ ∀u ∈ Rn. (7.23)

hold, where the norms ‖ ·‖Xϑ and ‖ ·‖Yϑ are the norms associated to the inner products

(u,v)Xϑ = (Mϑu,v)`2 , with Mϑ = [M 0,M 1]ϑ, and
(u,v)Yϑ = (Nϑu,v)`2 , with Nϑ = [N 0,N 1]ϑ,

respectively.

Proof. For the proof, we refer to the proof of Theorem 2.29 in [229] and references
therein, see also [1].

Remark 7.16. Using the notation from Theorem 7.15, one can show the alternative
representation

‖u‖2
Xϑ

=
2 sin(ϑπ)

π

∫ π

0

t−(2ϑ+1)K(t;u)2 dt

of ‖u‖Xϑ, where K(t;x) = infx=x0+x1(‖x0‖2
X0

+ t2‖x1‖2
X1

)1/2. From this representa-
tion, we observe that

[X0, X1]ϑ = [X1, X0]1−ϑ. (7.24)

Let us consider a general saddle-point matrix

A =

[
A B
BT −C

]
,

where A and C are symmetric and positive definite matrices. We can define two
possible negative Schur complements

S := C +BA−1BT and R := A+BC−1B, (7.25)

and the associated block diagonal preconditioners

P 0 :=

[
A 0
0 S

]
and P 1 :=

[
R 0
0 C

]
.
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For P 0 and P 1, the following spectral inequalities are known

(
√

5− 1)/2‖u‖Pj ≤ ‖Au‖P−1
j
≤ (
√

5 + 1)/2‖u‖Pj j ∈ {0, 1},

see Theorem 2.26 and Corollary 2.27 in [229] and references therein. Based on these two
preconditioners, we construct a preconditioner P ϑ with ϑ = 1/2 by an interpolation
of the preconditioners P 0 and P 1:

P 1/2 = [P 0,P 1]1/2 =

[
[A,R]1/2 0

0 [S,C]1/2

]
.

By means of Theorem 7.15 and the setting M 0 = P 0,M 1 = P 1,N 0 = P−1
0 and

N 1 = P−1
1 , it follows that

(
√

5− 1)/2‖u‖P1/2
≤ ‖Au‖P−1

1/2
≤ (
√

5 + 1)/2‖u‖P1/2
.

Hence, κP1/2
(P−1

1/2A) ≤ (
√

5 + 1)/(
√

5 − 1). Note, this condition number estimate
would hold for all ϑ ∈ [0, 1]. In the following, we are looking for an approximation of
P 1/2, which can easily be realized in an implementation.

Theorem 7.17. Let Kx andMx be symmetric and positive definite matrices, and let
α and β be real numbers with α > 0. Furthermore, we define the block matrices

A :=

[
Kx + αMx βMx

βMx −(Kx + αMx)

]
, (7.26)

P :=

[
Kx + (α + |β|)Mx 0

0 Kx + (α + |β|)Mx

]
. (7.27)

Then the condition number estimate

κP (P−1A) ≤
√

2

√
5 + 1√
5− 1

(7.28)

holds.

Proof. The proof follows the lines in [229], Section 3.3. For simplicity, we introduce
the notations K := Kx + αMx andM := Mx. Recall the system matrix

A =

[
Kx + αMx βMx

βMx −(Kx + αMx)

]
=

[
K βM
βM −K

]
.

Since K is symmetric and, due to α > 0, also positive definite, we can reformulate the
two Schur complements from (7.25) for the matrix A as follows:

S = R = K + β2MK−1M.
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We are looking for an spectral equivalent approximation P of P 1/2, which is easy to
realize and fulfils the spectral inequalities

cP ≤ P 1/2 ≤ cP , (7.29)

where the constants c and c are independent of α and β. Next we estimate [K,R]1/2
and [S,K]1/2. Here we make use of the following matrix inequalities

1√
2

(
√
aI +

√
bX1/2) ≤ (aI + bX)1/2 ≤

√
aI +

√
bX1/2, (7.30)

where X is a symmetric and positive definite matrix, and I denotes the identity
matrix. First we derive an upper bound for [K, R]1/2:

[K,R]1/2 = K1/2
(
K−1/2RK−1/2

)1/2K1/2

= K1/2
(
K−1/2(K + β2MK−1M)K−1/2

)1/2K1/2

= K1/2
(
I + β2K−1/2MK−1MK−1/2

)1/2K1/2

≤ K1/2
(
I + (β2K−1/2MK−1MK−1/2)1/2

)
K1/2

= K + |β|K1/2(K−1/2MK−1MK−1/2)1/2K1/2

= K + |β|K1/2(K−1/2MK−1/2)1/2(K−1/2MK−1/2)1/2K1/2

= K + |β|K1/2(K−1/2MK−1/2)K1/2

= K + |β|M.

Similarly, for the lower bound, we obtain

[K,R]1/2 = K1/2
(
K−1/2RK−1/2

)1/2K1/2

= K1/2
(
I + β2K−1/2MK−1MK−1/2

)1/2K1/2

≥ K1/2
( 1√

2
(I + (β2K−1/2MK−1MK−1/2)1/2)

)
K1/2

=
1√
2

(K + |β|K1/2(K−1/2MK−1MK−1/2)1/2K1/2)

=
1√
2

(K + |β|M).

The missing estimate from above and below for [S,K]1/2 follow from the fact that
[S,K]1/2 = [K,S]1/2 = [K,R]1/2, see (7.24). Hence, for the preconditioner

P =

[
K + |β|M 0

0 K + |β|M

]
=

[
Kx + (α + |β|)Mx 0

0 Kx + (α + |β|)Mx

]
,
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we obtain the spectral constants c = 1√
2
and c = 1 in (7.29). Finally, we arrive at the

estimate

κP (P−1A) = ‖P−1A‖P‖A
−1
P‖P ≤

√
2‖P−1

1/2A‖P1/2
‖A−1

P 1/2‖P1/2
≤
√

2

√
5 + 1√
5− 1

.

(7.31)

Remark 7.18. The estimate (7.31) of the condition number κP (P−1A) can be im-
proved by solving the generalized eigenvalue problem

A

[
x
y

]
= λP

[
x
y

]
.

directly. Following the procedure outlined in Remark 9 in [237], see also the proof of
Theorem 7.19, we find that the generalized eigenvalues satisfy the estimates

|λmin| ≥
1√
2

and |λmax| ≤ 1,

which leads to the improved condition number estimate κP (P−1A) ≤
√

2.

We note that both block-diagonal entries of P are identical, and the matrix Kx +
(α + |β|)Mx is symmetric and positive definite. This opens various possibilities for
preconditioning based on standard techniques for symmetric and positive definite ma-
trices. We can solve the linear system with system matrixA, e.g., by means of MinRes
preconditioned by P−1. We can even use an spectral equivalent approximation P̂

−1
,

i.e., cP̂
−1
≤ P−1 ≤ CP̂

−1
, with constants c and C, independent of α and β. More-

over, this approach allows for a further parallelization by applying An in parallel for
n = 1, . . . , Nt.

Unfortunately, this approach has a severe drawback. Due to the fact that the matrix
M−1

t Kt is non-symmetric, the matrix X of eigenvectors is not unitary and, therefore,
κ(X) 6= 1. Actually, numerical tests in Section 7.3.1 show that, for large B-Spline
degree or small ht, we observe that the condition number κ(X) ≈ 1012. In that
case we cannot correctly apply (7.13) and the algorithm fails. This problem can be
circumvented by using the Complex or Real-Schur decomposition, as presented in the
subsequent two subsections.

7.2.4 Complex-Schur Decomposition

In this section, we investigate an alternative possibility for decomposingM−1
t Kt. The

Complex-Schur decomposition provides a decomposition of the form

M−1
t Kt = Q∗TQ, (7.32)
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where Q ∈ CNt×Nt , and T ∈ CNt×Nt is a upper triangular matrix with Tii = λi. The
advantage of the (Complex) Schur decomposition is the fact that we obtain a unitary
matrix Q. Hence, κ(Q) = 1, but the diagonal matrixD in the decomposition (7.22) is
now replaced by the upper triangular matrix T in the decomposition (7.32), By means
of (7.32), the matrix Z ⊗Mx + I ⊗Kx from (7.13) takes the form

(Z ⊗Mx + I ⊗Kx)
−1 = (T ⊗Mx + I ⊗Kx)

−1

=


Kx + T11Mx T12Mx . . .

0 Kx + T22Mx T23Mx
... 0

. . . TNtNt−1Mx

0 . . . 0 Kx + TNtNtMx


−1

=


Kx + λ1Mx T12Mx . . .

0 Kx + λ2Mx T23Mx
... 0

. . . TNtNt−1Mx

0 . . . 0 Kx + λNtMx


−1

The application of (T ⊗Mx+I⊗Kx)
−1 to some vector f can be performed staggered

way as presented in Algorithm 8.

Algorithm 8 Calculation of y = (T ⊗Mx + I ⊗Kx)
−1f

for i = Nt, Nt − 1 . . . , 1 do
g = f i
for j = i+ 1, i+ 2 . . . , Nt do
g = g − Tijyj

end for
Solve (Kx + λiMx)yi = g, where λi = Tii.

end for
return y

In order to solve the linear systems (Kx+λiMx)yi = gi, i = 1, . . . , Nt in Algorithm 8,
we can use the techniques developed in the previous subsection. This decomposition
method allows us to have a well conditioned transformation matrix Q, however at the
cost that the linear system cannot be solved independently of each other. We note that
this method and the eigenvalue decomposition require complex arithmetic, which is
more expensive than the real one. In the following subsection, we investigate the Real-
Schur decomposition, which eliminates the need for having complex arithmetic.
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7.2.5 Real-Schur Decomposition

In this subsection, we look at the decomposition ofM−1
t Kt by means of the Real-Schur

decomposition. It provides a decomposition of the form

M−1
t Kt = Q∗TQ, (7.33)

where Q ∈ RNt×Nt . The matrix T ∈ RNt×Nt is a upper quasi-triangular matrix, i.e.,
the diagonal consists of 1×1 and 2×2 blocks. The values of the 1×1 blocks correspond
to the real eigenvalues, while the 2× 2 blocks correspond to the complex eigenvalues
of M−1

t Kt.

By additionally performing a Givens rotation, the 2 × 2 block can be transformed to
the structure [

α β1

β2 α

]
,

where α, β1, β2 ∈ R and β1 6= β2 6= 0. The eigenvalues of this matrix are given by
α±
√
β1β2. Due to the fact that the eigenvalues have to be complex and the real part

has to be positive, we obtain that α > 0 and β1 and β2 have different signs. Therefore,
we can write the eigenvalues as α± ı

√
|β1β2|.

Using this decomposition, the matrix Z ⊗Mx + I ⊗Kx appearing in (7.13) has a
structure, which is similar to that one of the Complex-Schur decomposition. The cor-
responding system of linear algebraic equations can also again be solved in a staggered
way as presented in Algorithm 8. One has to adapt the algorithm in such a way that,
if the diagonal block is a 2 × 2 block, one has to work with two-block vectors and a
2× 2 block matrix. It remains to investigate the solution strategy for the 2× 2 block
matrix. As already mentioned, the 2×2 block of T is non-symmetric. Hence, the 2×2
block matrix is also non-symmetric and is given in the following way[

Kx + αMx β1Mx

β2Mx Kx + αMx

]
.

The structure of the matrix is very similar to A in Theorem 7.17 up to the non-
symmetry, which origins just from the different scalings β1 and β2 and their different
sign. By a proper rescaling, we can transform this linear system into an equivalent
system with a symmetric, but indefinite system matrix:[

Kx + αMx β1Mx

β2Mx Kx + αMx

] [
x
y

]
=

[
f
g

]
⇐⇒

[
Kx + αMx −β1Mx

β2Mx −(Kx + αMx)

] [
x
−y

]
=

[
f
g

]
⇐⇒

[
|β2|(Kx + αMx) −β1|β2|Mx

|β1|β2Mx −|β1|(Kx + αMx)

]
︸ ︷︷ ︸

=:A

[
x
−y

]
=

[
|β2|f
|β1|g

]
,
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We note that β1 and β2 have different signs. Hence, −β1|β2| = −β2|β1|. Motivated
by the construction of the preconditioner in the case of the eigenvalue decomposition,
we can come up with an optimal preconditioner. The following theorem presents this
optimal preconditioner for the matrix A.

Theorem 7.19. Let Kx andMx be symmetric and positive matrices, and let α, β1, β2

be real numbers with α > 0. Furthermore, we define the block matrices

A :=

[
|β2|(Kx + αMx) −β1|β2|Mx

|β1|β2Mx −|β1|(Kx + αMx)

]
,

P :=

[
|β2|(Kx + (α +

√
|β1β2|)Mx) 0

0 |β1|(Kx + (α +
√
|β1β2|)Mx)

]
.

Then the condition number estimate

κP (P−1A) ≤
√

2.

holds.

Proof. The proof follows the lines from Remark 9 in [237], which gives a sharper bound
than using interpolation theory as in [229]. For notational simplicity, we introduce the
abbreviations K := Kx + αMx and M := Mx. We now investigate the generalized
eigenvalue problem Au = λPu, which reads[
|β2|K −β1|β2|M
|β1|β2M −|β1|K

] [
x
y

]
= λ

[
|β2|(K +

√
|β1β2|M) 0

0 |β1|(K +
√
|β1β2|M)

] [
x
y

]
.

(7.34)

At first we consider the following generalized eigenvalue problem

Kz = µ(K +
√
|β1β2|M)z.

Due to the fact that K and M are symmetric, there exists a basis {e1, e2, . . . , eNx}
of eigenvectors, which are orthonormal with respect to the inner product generated
by K +

√
|β1β2|M, and corresponding eigenvalues µj. Since K is dominated by K +√

|β1β2|M and due to their positivity, we have that µj ∈ [0, 1]. Therefore, we can
express x and y as a linear combination of ej with coefficients x̂j and ŷj, respectively.
Moreover,Mz fulfils the following identity

Mz = (|β1β2|)−1/2(
√
|β1β2|M+K)z − (|β1β2|)−1/2Kz

= (|β1β2|)−1/2(
√
|β1β2|M+K)z − (|β1β2|)−1/2µ(K +

√
|β1β2|M)z

= (|β1β2|)−1/2(1− µ)(
√
|β1β2|M+K)z.

Using the expansion of x and y into the eigenvectors {ej}, system (7.34) decomposes
into the 2× 2 systems[

|β2|µj −β1|β2||β1β2|−1/2(1− µj)
|β1|β2|β1β2|−1/2(1− µj) −|β1|µj

] [
x̂j
ŷj

]
= λ

[
|β2| 0
0 |β1|

] [
x̂j
ŷj

]
.
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Since there exists at least one pair (x̂j, ŷj) which is non-zero, the determinant of the
system matrix must be zero, i.e.,

det
([

|β2|µj −β1|β2||β1β2|−1/2(1− µj)
|β1|β2|β1β2|−1/2(1− µj) −|β1|µj

]
− λ

[
|β2| 0
0 |β1|

])
= 0,

which reduces to

|β1β2|(λ2 − µ2
j)− (β1β2)2|β1β2|−1(1− µj)2 = 0,

where we used that −β1|β2| = |β1|β2 6= 0. We immediately obtain that |λ| =√
µ2
j + (1− µj)2 for µi ∈ [0, 1], and it follows that 1√

2
≤ |λ| ≤ 1, which gives the

desired bound on the condition number of P−1A.

Now we can again use the MinRes preconditioned by P as iterative solver for systems
with the system matrix A, and we obtain a robust method. Moreover, due to the
use of real arithmetic, this approach is usually more efficient than that one using the
Complex-Schur decomposition.

7.2.6 IETI-DP for Time Slices – Parallelization in Space

In this section, we discussion two options for using IETI-DP as a preconditioner for the
problems related to a time-slab Qn. The first options uses IETI-DP as preconditioner
for the spatial problems Kx + γMx, appearing in the previous sections. For such
problems, we have the theoretical foundation that the condition number of the pre-
conditioned system is of order O((1+log(H/h))2). The second approach uses IETI-DP
directly as preconditioner for the non-symmetric space-time slab problemAn. In order
to realize additional parallelization in space, parallel matrix application is required.
Moreover, in order to enable coarsening in space and time, parallel space-transfer
operators are needed.

IETI-DP for the Spatial Problems K + γMx

As already mentioned in the beginning of this section, the matrices K + γMx appear
as a result of decomposing the matrix An. Either they are directly appearing as the
system matrices, then γ equals an real eigenvalue ofM−1

t Kt, or they form the diagonal
of a block diagonal preconditioner, where γ is a combination of the real and imaginary
part, see Section 7.2.2. In either case, we can assume that γ > 0, see Remark 7.10 to
Remark 7.13 for a discussion about the positivity. Therefore, the matrix K + γMx is
symmetric and positive definite which perfectly fits into the framework of the IETI-DP
method. In Chapter 3 and Chapter 4, we proved that the condition number of the
preconditioned system is bounded by O((1+log(H/h))2) for case without mass matrix
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Mx. However, adding a positive multiple of the mass matrix does not affect on its
condition number.

Concerning the realization, the IETI-DP method calculates a LLT decomposition, of
K(k) +γM (k)

x on each spatial patch Ω(k). However, if γ varies, we have to compute the
factorization for each different γ. From this perspective, Multigrid methods would have
an advantage over the IETI-DP method. Moreover, the IETI-DP has some noticeable
overhead, when applied only for a few iterations due to the transformation to the Schur
complement formulation and vice-versa.

Regarding parallelization, using a space parallel method for these problems might not
be very efficient in terms of communication. The reason is that their application appear
in the innermost loop of the time-parallel MG algorithm. Hence, they have to be called
very frequently on a relatively small number of dofs. This is especially problematic,
when IETI-DP is used for preconditioning the matrix P as defined in Theorem 7.17 and
Theorem 7.19.Therefore, we do not investigate the parallel scalability of this method
in Section 7.3.

IETI-DP for the Space-Time Problem An

Alternatively, one can apply IETI-DP directly to the non-symmetric problem An at
the price of loosing much of the theoretical foundation. We refer to [219] for an analyis
of BDDC for FE and to [214] for an analysis of the FETI method. Although, there are
not much theoretical results, numerical tests show a good performance of the method,
see, e.g., [120], [151] and references therein.

When adapting the algorithm to the non-symmetric case, we have to be careful when
dealing with S(k)-orthogonal decomposition of W̃ intoWΠ andW∆, see Section 3.2. We
constructed the basis ofWΠ in such a way thatWΠ ⊥S W∆. Since S is non-symmetric,
this does not make sense, because (S·, ·) defines not a scalar product. However, we
still can construct the basis Φ in such a way, that[

S(k) C(k)T

C(k) 0

][
φ̃

(k)
j

µ̃
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }.

The result is that S̃ does not have block diagonal structure, but a upper triangular
block structure, i.e.,

S̃ =

[
SΠΠ SΠ∆

0 S∆∆

]
.

The application of SΠ∆v∆ can be realized by first applying S, and then extracting the
primal component, i.e.,

fΠ = AΦTSv∆,
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Figure 7.3: Left picture shows the space-time domain Q = Ω×(0, T ) with 8 time-slabs;
right picture presents the spatial domain Ω, consisting of 21 patches.

where A is the assembling operator for the primal components and Φ denotes the
coefficient representation of the basis functions of WΠ, cf. Section 5.3.4.3. in [183].
The application of S requires the solution of a Dirichlet problem, see Section 3.2.4.
Moreover, the final linear system (3.12) is non-symmetric and has to be solved by
means of GMRes, see [191].

From a parallelization point of view, the most efficient strategy would probably be to
use the techniques developed in Section 7.2.2 to efficiently solve the local problems in
the IETI-DP method. No communication would be required to solve a local system.
This approach would follow the idea of a coarse-grained parallelization, whereas the
former corresponds to a fine-grained parallelization.

7.3 Numerical Examples

In this section, we test the proposed preconditioners on the three (2+1) dimensional
space-time cylinder Q illustrated in Figure 7.3. The two-dimensional spatial domain
Ω consists of 21 spatial subdomains (volumetric patches). For each time slab, we use
conforming B-Splines of degree p. The problems were calculated on a Desktop PC with
an Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz and 16 GB main memory. We use
the C++ library G+Smo for describing the geometry and performing the numerical
tests, see also [111] and [162].
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Nt − p \ p 2 3 4 5 6 7 8

2 64 309 362 766 1706 3907 9501
4 481 1036 3037 9419 41959 39323 73946
8 2869 16118 39693 74370 180054 472758 1e+06
16 34332 188263 463148 1e+06 6e+06 3e+07 1e+08
32 701306 2e+06 1e+07 6e+07 4e+08 7e+09 1e+10
64 5e+07 4e+07 3e+08 3e+09 6e+10 3e+11 1e+12
128 2e+08 1e+09 1e+10 3e+11 2e+13 5e+13 4e+14

Table 7.1: Condition number of X : θ = 0.01 and |tn+1 − tn| = 0.1.

7.3.1 Condition Number of Eigenvectors

Here, we study the condition number κ of the generalized eigenvectors of (Kt,M t).
Due to the non-symmetry of Kt and M t, we do not obtain an orthogonal basis of
eigenvectors. Hence, the condition number is not 1. Actually, it can be quite large. We
report on the condition number for different p and Nt in Table 7.1. We observe that
the condition number grows exponentially with p and Nt. We conclude, that for small
p or small number of dofs in time direction, the approach presented in Section 7.2.3
may be still feasible.

7.3.2 Smallest Real Part of the Eigenvalue of M−1
t Kt

In Section 7.2.2, we observed the necessity that the smallest real part of the eigenvalues
of M−1

t Kt is positive. In this section, we present numerical studies for different p, h
and θ, where we fix the time interval to [0, 1]. The results are summarized in Table 7.2,
where the entries with ∗ indicate that the matrixM t had at least one eigenvalue with
negative real part. Consequently, the smallest real part of the generalized eigenvalues
was also negative. We observe that, if M t > 0, then also the real part of M−1

t Kt

is positive. The positive real part of the eigenvalues for the p = 1 and θ = 0 is
in agreement with Remark 7.11. Moreover, for θ = 0 and increasing p we observe
even an increase of the smallest real part of the eigenvalues, cf. Proposition 7.9 and
Remark 7.11. The numerical tests indicate that, for sufficiently small θ, the smallest
real part of the generalized eigenvalues stays positive.

7.3.3 Condition Number of Preconditioned Kx + λMx

The aim of this section is to verify the optimal condition number bound presented
in Theorem 7.17 and Theorem 7.19. To do so, we report on the maximum number
of MinRes-iterations in order to solve Kx + λiMx, where λi ∈ C are the generalized
eigenvalues of (Kt,M t). We use zero initial guess, and a reduction of the initial
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2 uniform refinements 4 uniform refinements
θ\p 1 2 3 4 5 6 7 1 2 3 4 5 6 7
0 1.5 2.4 3.2 3.8 4.3 4.7 5.0 0.2 0.5 0.9 1.5 2.1 2.7 3.4

0.01 1.6 2.5 3.2 3.6 4.0 4.4 4.9 0.7 0.7 1.1 1.6 2.2 2.8 3.3
0.1 2.5 2.9 3.2 3.6 4.0 4.5 5.2 4.8 2.9 2.7 3.0 3.4 3.6 4.1
1 4.1 4.5 4.7 * * * * 12.4 12.0 9.2 * * * *

10 4.6 5.2 5.2 * * * * 6.7 11.8 * * * * *
6 uniform refinements 8 uniform refinements

θ\p 1 2 3 4 5 6 7 1 2 3 4 5 6 7
0 0.01 0.03 0.06 0.1 0.1 0.2 0.2 0.0008 0.002 0.004 0.006 0.009 0.01 0.02

0.01 1.9 1.0 0.8 0.7 0.6 0.6 0.6 7.7 4.0 3.0 2.5 2.0 1.8 1.6
0.1 18.6 9.9 7.4 6.0 5.1 4.5 4.0 34.8 33.8 29.5 23.8 20.0 17.2 15.1
1 34.2 35.1 33.8 * * * * 34.8 34.4 34.5 * * * *

10 11.4 17.4 * * * * * 29.0 32.2 * * * * *

Table 7.2: Smallest real part of generalized eigenvalues Ktx = λM tx for different
B-Spline degrees p, θ and number of dofs. The ∗ indicates that, the matrixM t has at
least one eigenvalue with negative real part.

C-Schur decomp. R-Schur decomp.
ref. x and t \ p 2 3 4 5 6 2 3 4 5 6

0 23 22 26 26 26 18 18 20 21 22
1 25 24 24 27 26 20 20 22 22 22
2 25 25 25 27 27 22 22 22 22 22
3 24 26 26 27 27 22 22 22 22 21
4 25 25 26 27 26 22 22 22 22 20

Table 7.3: Maximum number of MinRes iterations to solve Kx + λiMx, i = 1, . . . , nt
resulting from the Complex- and Real-Schur decomposition. Refinement is performed
uniformly in x and t.

residual by 10−10. We choose θ = 0.1. In Table 7.3, we investigate the robustness
of the preconditioners from Theorem 7.17 and Theorem 7.19. We observe that the
number of iterations stays bounded for various p and h.

7.3.4 Application to Space-Time Multigrid

This section deals with the use of the iterative methods developed in Section 7.2.2
as smoothers in the space-time Multigrid. The realization of the preconditioner P ,
see Theorem 7.17 and Theorem 7.19 is performed via a sparse direct solver. We use
the PARDISO 5.0.0 Solver Project [140] for performing the LU factorizations. We
compare the three different approaches, presented in Section 7.2.2, with the exact
realization of A−1

n via the sparse direct solver PARDISO. For approximating A−1
n via

MinRes, we use zero initial guess and a reduction of the initial residuum by 10−4.
In Table 7.4, we report on the single-core computation time of the MG algorithm to
setup the data-structures and solve the system via the MG iteration. The setup time
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#dofs ref #slabs MG-It Direct Diag
x t Setup Solving Setup Solving

15950 2 3 2 7 1.9 0.7 0.04 2.3
97020 3 3 4 7 38.6 8.5 0.3 19.4
665720 4 3 8 7 1008 94.6 3.7 183.8
#dofs ref #slabs MG-It C-Schur R-Schur
15950 2 3 2 7 0.05 2.4 0.04 1.3
97020 3 3 4 7 0.5 19.9 0.3 11.1
665720 4 3 8 7 5.4 187.3 3.7 108.0

Table 7.4: Comparison of the Eigenvalue, Complex-Schur and Real-Schur decomposi-
tion with a sparse direct solver used for approximating A−1

n . The timings are given in
seconds.

includes the required LU factorizations, but not the assembling of the matrices, which
is implemented as in Section 7.1.2 and does not give a significant contribution to the
overall time. For the MG iteration, we use zero initial guess and a reduction of the
initial residuum by 10−8. We choose θ = 0.01, |tn − tn+1| = 0.1 and the polynomial
degree by p = 3 for both space and time directions. Moreover, we fix the number of
dofs in time direction of a time slab, but increase the number of time slabs. The MG
method uses coarsening in space as well as in time.

We observe that the LU factorization of An needs a quite large amount of time,
whereas the setup time is almost negligible for the three preconditioners proposed.
The little increase in the solution time definitely pays off by the small setup time.
In addition, the Real-Schur decomposition almost provides the same solution time as
the direct solver. Because of the complex arithmetic of the Diagonalization or the
Complex-Schur decomposition, their computational effort doubles, which we observe
also in the numerical test. Finally, due to the quite accurate approximation of A−1

n

(up to 10−4), we do not observe a deterioration of the MG iteration numbers. It took
around 12 MinRes-iterations to reach the desired tolerance of 10−4.

7.3.5 Parallelization

We conclude the numerical examples with studies regarding the parallelization in space
and time. The results are obtain on the RADON11 cluster at Linz. Each node is
equipped with 2x Xeon E5-2630v3 “Haswell” CPU (8 Cores, 2.4Ghz, 20MB Cache)
and 128 GB RAM. We consider a similar setup as in Section 7.3.4, i.e., we use B-Spline
degree 3, perform two refinements in spatial direction, 3 in time direction, θ is given
by 0.01 and |tn − tn−1| = 0.1. We perform coarsening in space and time. The systems
with the system matrix (Kx + γMx), γ ∈ R+ are solved by means of PARDISO, i.e.,

1https://www.ricam.oeaw.ac.at/hpc/
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#dofs #procs= #slabs It. Setup Solving
48510 2 7 0.088 2.8
97020 4 7 0.092 3.1
194040 8 7 0.093 3.2
388080 16 7 0.093 3.3
776160 32 7 0.094 3.4
1552320 64 7 0.096 3.5
3104640 128 7 0.100 3.5
6209280 256 7 0.104 3.9

Table 7.5: Weak scaling results for parallelization in time, timings are given in seconds.
Real-Schur decomposition is used to realize the application of A−1

n .
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Figure 7.4: Visualization of the weak scaling results from Table 7.5 (left) and Table 7.6
(right).

a sparse direct solver. For the time-parallel MG method, we use a reduction of the
initial residuum by 10−8 as stopping criterion, while a relative tolerance of 10−4 is used
for the linear system in (7.13). First, we consider only parallelization in time and we
use the same number of processors and time-slabs, i.e., each time-slab is associated
with one processor. In Table 7.5, we report on the weak scaling results using the
Real-Schur decomposition to realize the application of A−1

n . The results are visualized
in Figure 7.4.

Next, we investigate the parallel scaling behaviour in space and time. We restrict
ourselves to the second option discussed in Section 7.2.6, where we apply IETI-DP
methods to the non-symmetric matrix An arising from the space-time sub-problem
posed on the time-slabs. As already mentioned in Section 7.2.6, we do not perform
experiments for other possibilities of realizing additional parallelization in space.

In order to eliminate the influence of load imbalances regarding different number of dofs
on the patches, we use a simple square domain, decomposed into 4×4 patches as spatial
domain. In order to approximate A−1

n , we perform 3 GMRes-IETI-DP iterations,
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#dofs ref x #sl. #proc. cx ct It. Setup Solving
23276 2 4 2 1 2 8 5.7 22.3
46552 2 8 4 1 4 8 6.9 29.5
93104 2 16 8 1 8 8 8.3 36.6
267696 3 16 32 4 8 8 9.7 44.5
535392 3 32 64 4 16 8 11.3 54.0
1774432 4 32 256 16 16 7 9.6 82.5
3548864 4 64 512 16 32 10 11.6 185.3

Table 7.6: Weak scaling results for parallelization in space and time, timings are given
in seconds. The IETI-DP method is used to realize the application of the space-time
slab matrix A−1

n .

where we use a direct solver for the patch-local space-time problems. However, we
use coarsening only in time direction. In Table 7.6, we report on the weak scaling
results. The number of processors grow in the same way as the number of dofs, e.g.,
when performing uniform refinement in space, we increase the number of processors
used for space parallelization by a factor of four. The number of processors used for
parallelization in space and time are denoted by cx and ct, respectively.

We observe a increase of computation time, especially, when going from 32 to 64 time
slabs. The reason is the missing coarsening in space, because we have to solve at each
time-level still a large space-time problem. Moreover, the number of MG iterations
increases, because the IETI-DP method is not completely robust with respect to the
mesh-size h.



Chapter 8

Conclusion and Outlook

Conclusion

In this thesis, we investigated fast solvers for systems of linear algebraic equations
arising from IgA of elliptic diffusion problems. In more detail, we considered the
adaption of the FETI-DP method to IgA, called IETI-DP. We investigated the cases
where we have a cG formulation with C0 coupling across the patch interfaces, and a
coupling using the dG method, which allows for discontinuities at the interfaces. In
the interior of the domain, we assumed a smooth B-Spline basis of degree p, preferably
with maximum smoothness Cp−1. This setting allowed an extension of the FETI-DP
method for cG and dG formulations to IgA.

For two-dimensional domains we could prove quasi-optimal condition number bounds
of the preconditioned cG- and dG-IETI-DP operator with respect to the ratio H/h
of patch-diameter H and patch-local mesh-size h. Our analysis did not cover the
dependence on the B-Spline degree p and on jumps of the diffusion coefficient α across
patch interfaces. Nevertheless, numerical experiments for both methods showed at
most a linear dependence (or even logarithmic) on p, and robustness with respect
to jumps in α. In order to obtain a scalable algorithm also for three-dimensional
domains, we implemented in addition edge and face averages as primal variables. All
primal variables were incorporated by means of constraints. We applied the dG-IETI-
DP also to domains, where gap and overlapping regions are located at the patch
interfaces. The numerical examples indicated, that the performance of the solver is
not affected by such segmentation crimes.

The FETI-DP method is a well established and widely used FE solver, which shows
excellent parallel scalability. Therefore, we investigated the parallel performance of
the IETI-DP methods. For FETI-DP, a given mesh is distributed to the different
processors by a mesh-partitioning software to obtain equally distributed dofs, avoiding
load imbalances. However, in IgA, the partition of the domain into patches is already
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prescribed by the geometry, which may not fit the number of available processors
and the number of dofs associated to a patch may not be equally distributed. To
overcome this problem, large patches can be split into smaller ones to obtain a more
equally distributed number of dofs. In this work, we increased the multiplicity of the
corresponding knots such that the newly introduced patches are again coupled with
C0 continuity. However, this approach leads to a larger number of unknown. If the
number of dofs associated to the interface does not dominate the interior dofs, we still
obtain a scalable method. In contrast to this, we could stick to the basis that remains
smooth at the introduced interfaces, but in turn, we have to deal with so-called fat
interfaces, as introduced and analyzed in [19], [22] and [23].

When refining the mesh and increasing the B-Spline degree, the local problem can
become quite large. In such cases, sparse direct solvers, which are usually used, cannot
efficiently handle these problems, neither in terms of computation time nor memory
consumption. We investigated the use of inexact solvers, like MG or FD methods
as replacement for the sparse direct solvers. We proposed several variants, each of
them having a different combination of direct and inexact solver. We observed, that
for small degree p, we almost cannot take any advantage using inexact variants in
terms of computation time, but for large degree p especially the FD method provided
promising results.

Finally, we investigated solvers for large-scale systems of algebraic equations arising
from space-time IgA discretization of parabolic diffusion problems. The goal was to
construct robust and parallelizeable smoothers for a time-parallel MG method posed
on time-slabs. The construction used a generalized eigendecomposition to decouple
the space-time problem into a series of spatial problems, following the ideas of the FD
method. Instabilities arising from the ill-conditioned matrix of generalized eigenvectors
were overcome by means of a real or complex Schur decomposition instead. The
resulting spatial problems corresponding to complex eigenvalues were rewritten as
symmetric indefinite problems, for which we constructed optimal and robust block-
diagonal preconditioners based on [237]. The issue of additional parallelization in
space was handled only by the application of IETI-DP methods for the non-symmetric
space-time sub-problems posed on the time-slabs. Moreover, we only used coarsening
in time, which does not lead to a scalable method. The use of coarsening in space
requires (space-)parallel inter-grid transfers, which are not available in the used library
G+Smo. Further investigation and the implementation of the corresponding methods
is the topic of current research.

Outlook

The work presented in this thesis can be extend in several directions

• We proved the quasi-optimal condition number bound with respect to the mesh-
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size h of the preconditioned cG- and dG-IETI-DP operator only for the two-
dimensional case. Moreover, we have not theoretically investigated the depen-
dence on jumps of the diffusion coefficients and on the B-Spline degree p. A
rigorous proof for the dependence on α and p, as well as the extension to three-
dimensions is still open.

• The number of primal variables used in the dG-IETI-DP method increases com-
pared to the cG case, especially for three-dimensional problems, which has a
negative impact on the parallel scalability if the number patch becomes larger.
It would be interesting to combine the adaptive selection of primal variables with
the dG-IETI-DP to reduce their total number.

• In Chapter 5, we discussed the introduction of patches by a uniform splitting of
the patches in the original domain. The goal is to fit the number of available
processors and have an almost equal load distribution. For the numerical test,
we only considered domains, where the original domain has already an optimal
distribution and no such procedure is necessary. Certainly, for realistic applica-
tions, an algorithm is required which performs a patch refinement, such that each
processor is assign to an almost equal number of dofs and the resulting geometry
is still fully matching, i.e., no hanging vertices. Moreover, the assignment of
processors to patches should be in such a way, that the required communication
between processors is minimal.

• In Chapter 6, we considered inexact solvers for the local problems only for the cG
formulation. Both the MG and FD method rely on the tensor product structure
of the corresponding parameter domain matrices. However, this structure is
lost for the dG version of IETI-DP. Such an extension would be important, but
requires new ideas.

• The geometry transformation has quite a significant influence on the performance
of the MG and the FD method. Although we incorporated information of the ge-
ometrical mapping via a rank-one approximation, we still observed an increased
number of iterations for heavily distorted patches. This makes the fine-tuning of
parameters, which are used in the inexact versions, very hard. One way to deal
with this problem would be to develop a hybrid direct-inexact version, where
inexact solvers are used on the very regular patches and direct solvers on the
more distorted patches. Nevertheless, one has to take into account the different
complexity of sparse direct solvers on the one side and inexact method on the
other side. Hence, the patches, where the direct solver is used should be smaller
and have less dofs.

• In Chapter 6, we mentioned that solving the problems (6.3) and (6.5) up to a
very small relative tolerance is not always possible due to numerical instabilities.
However, this is not necessary if the overall approximation error is much larger.
Hence, the stopping criteria of the involved iterative methods should be chosen
dependent on the (estimated) approximation error. To conclude, a careful and
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smart selection of stopping criteria is important for the performance and reliable
application of these methods, and has to be further investigated.

• The work presented in Chapter 7 has to been seen as a first step towards the
construction of robust and parallel smoothers for the time-parallel MG method.
As already discussed in Section 7.2.6, there are various options to use parallel
solvers, like the IETI-DP method, to enable additional parallelization in space.
Besides IETI-DP, other fast multi-patch solvers can be used, like the multi-patch
MG method, as introduced in [204].
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